当前位置: 首页 > news >正文

《数字图像处理-OpenCV/Python》第17章:图像的特征描述

《数字图像处理-OpenCV/Python》第17章:图像的特征描述


本书京东 优惠购书链接 https://item.jd.com/14098452.html
本书CSDN 独家连载专栏 https://blog.csdn.net/youcans/category_12418787.html

在这里插入图片描述


第17章:图像的特征描述


特征检测与匹配是计算机视觉的基本任务,包括检测、描述和匹配三个相互关联的步骤。广泛应用于目标检测、图像检索、视频跟踪和三维重建等诸多领域。
OpenCV提供了丰富的特征检测和匹配算法,不仅继承了cv::Feature2D 类,而且采用了统一的定义和封装。


17.1 角点检测之Harris算法

角是直线方向的快速变化,角点定义为两条边的交点,是简单高效的特征。角点检测(Corner Detection)是特征检测的基础,Harris算法是经典的角点检测算法。


Harris角点检测

Harris角点检测算法的原理是,通过检测窗口在图像上移动,计算移动前后窗口中像素的灰度变化。角点是两条边的交点,其特征是检测窗口沿任方向移动都会导致灰度的显著变化。

Harris算法计算梯度的协方差矩阵M,协方差矩阵形状为椭圆,长短半轴由特征值 ( λ 1 , λ 2 ) (λ_1, λ_2) (λ1,λ2)决定,方向由特征向量决定。定义如下的角点响应函数 R。

R = d e t ( M ) − k [ t r a c e ( M ) ] 2 d e t ( M ) = λ 1 ∗ λ 2 t r a c e ( M ) = λ 1 + λ 2 \begin{aligned}R =& det(M) - k [trace(M)]^2 \\&det(M) = \lambda _1 * \lambda _2 \\&trace(M) = \lambda _1 + \lambda _2\end{aligned} R=det(M)k[trace(M)]2det(M)=λ1λ2trace(M)=λ1+λ2

角点响应 R 只与矩阵 M 的特征值 λ 1 , λ 2 \lambda _1,\lambda _2 λ1λ2 有关,可以用来判断区域是拐角、边缘还是平坦:

  • λ 1 , λ 2 \lambda _1,\lambda _2 λ1λ2 较小时, ∣ R ∣ |R| R 较小,即各个方向上灰度基本不变,表明检测器处于平坦区域;
  • λ 1 > > λ 2 \lambda _1 >> \lambda _2 λ1>>λ2 λ 2 > > λ 1 \lambda _2 >> \lambda _1 λ2>>λ1 时, R < 0 R <0 R<0 ,即灰度在某个方向变化,但在其正交方向不变化,表明检测器处于边缘区域;
  • λ 1 , λ 2 \lambda _1,\lambda _2 λ1λ2 较大且数值相当时,灰度在某个方向及其正交方向都变化强烈,表明存在角点或孤立点。

Harris角点检测算法的重复性好、检测效率高,应用比较广泛。

Shi-Tomas角点检测

Shi-Tomas算法是对Harris角点检测算法的改进,区别在于将角点响应函数修改如下。

R = m i n ( λ 1 , λ 2 ) R = min(\lambda _1 , \lambda _2) R=min(λ1,λ2)
只有当梯度协方差矩阵M的特征值 λ 1 , λ 2 λ_1, λ_2 λ1,λ2 都大于阈值时,才判定为角点。


OpenCV的角点检测函数

在OpenCV中提供了函数cv.cornerEigenValsAndVecs计算图像或矩阵的特征值和特征向量,函数cv.cornerMinEigenVal计算梯度矩阵的最小特征值,函数cv.cornerHarris实现Harris角点检测。

函数原型

cv.cornerHarris(src, blockSize, ksize, k[, dst, borderType]) → dst
cv.cornerEigenValsAndVecs(src, blockSize, ksize[, dst, borderType]) → dst
cv.cornerMinEigenVal(src, blockSize[, dst, ksize, borderType]) → dst

参数说明

 src:输入图像,单通道,数据类型为CV_8U或浮点数类型。
 dst:输出图像,角点响应函数,大小与src相同,格式为CV_32FC1。
 blockSize:检测器的滑动窗口尺寸,为整数。
 ksize:Sobel梯度算子的孔径,即卷积核的大小,为整数。
 k:Harris角点响应函数的调节参数,通常取0.04~0.06。
 borderType:边界扩充的类型,不支持BORDER_WRAP。

注意问题
⑴ 函数cv.cornerHarris返回值是如下的Harris的角点响应图像R。
R = d s t ( x , y ) = d e t ( M ( x , y ) ) − k ∗ [ t r a c e ( M ( x , y ) ) ] 2 R=dst(x,y)=det(M(x,y))-k*[trace(M(x,y))]^2 R=dst(x,y)=det(M(x,y))k[trace(M(x,y))]2
从角点响应图像中筛选大于检测阈值、且为局部最大值的点,就是图像的角点。检测阈值通常可以设为最大响应值的0.01~0.1。
⑵ 函数cv.cornerMinEigenVal与cv.cornerEigenValsAndVecs类似,区别在于它计算和保存矩阵M的最小特征值,即 m i n ( λ 1 , λ 2 ) min(λ_1 ,λ_2) min(λ1,λ2)


在OpenCV中提供了函数cv.goodFeaturesToTrack实现Shi-Tomas角点检测。

先使用cornerHarris或cornerMinEigenVal计算角点响应函数,最小特征值小于阈值的角点被剔除;并进行非最大值抑制,只保留(3×3)邻域中的局部最大值;最后按照角点响应函数的大小排序,输出前N个结果。

函数原型

cv.goodFeaturesToTrack(image, maxCorners, qualityLevel, minDistance[, corners, mask, blockSize, useHarrisDetector, k=0.04]) → corners

参数说明

 src:输入图像,单通道,数据类型为CV_8U或浮点数类型。
 corners:二维点向量集合的坐标(x,y),形如(n,1,2)的Numpy数组,浮点数。
 maxCorners:角点数量的最大值N,整数。
 qualityLevel:角点阈值系数,浮点数,取值范围0.0~1.0。
 minDistance:角点之间的最小欧式距离。
 mask:掩模图像,指定检测角点的区域,可选项。
 blockSize:检测器的滑动窗口尺寸,可选项,默认值为3。
 k:Harris角点响应函数的调节参数,可选项,默认值0.04。
 useHarrisDetector:计算角点响应的方法,默认值false,使用cornerMinEigenVal计算,true表示使用cornerHarris计算。

注意问题

⑴ 输出参数corners是形如(n,1,2)的Numpy数组,表示检测到n个角点的坐标(x,y)。
⑵ 检测阈值是阈值系数qualityLevel与最大响应值的乘积,小于阈值的角点都被拒绝。例如,最大响应为1500,系数为0.1,则检测阈值为150。
⑶ 剔除间距小于maxDistance的角点,实现非最大值抑制方法,避免重复的邻近角点。


【例程1701】角点检测之Harris算法和Shi-Tomas算法

本例程示例Harris角点检测算法和Shi-Tomas角点检测算法的使用。
Harris角点检测函数的返回值是角点响应图像,需要进行阈值处理才能得到角点坐标。Shi-Tomas角点检测函数的返回值是角点坐标。


# 【1701】角点检测之Harris算法和Shi-Tomas算法
import cv2 as cv
import numpy as np
from matplotlib import pyplot as pltif __name__ == '__main__':img = cv.imread("../images/Fig1201.png", flags=1)gray = cv.cvtColor(img, cv.COLOR_BGR2GRAY)# Harris 角点检测算法dst = cv.cornerHarris(gray, 5, 3, k=0.04)  # 角点响应图像,坐标(y,x)# Harris[dst>0.1*dst.max()] = [0,0,255]  # 筛选角点,红色标记stack = np.column_stack(np.where(dst>0.2*dst.max()))  # 阈值筛选角点 (n,2)corners = stack[:, [1, 0]]  # 调整坐标次序:(y,x) -> (x,y)print("num of corners by Harris: ", corners.shape)imgHarris = img.copy()for point in corners: cv.drawMarker(imgHarris, point, (0,0,255), cv.MARKER_CROSS, 10, 1)  # 在点(x,y)标记# Shi-Tomas 角点检测算法maxCorners, qualityLevel, minDistance = 100, 0.1, 5corners = cv.goodFeaturesToTrack(gray, maxCorners, qualityLevel, minDistance)  # 角点坐标 (x,y)corners = np.squeeze(corners).astype(np.int)  # 检测到的角点 (n,1,2)->(n,2)print("num of corners by Shi-Tomas: ", corners.shape[0])imgShiTomas = np.copy(img)for point in corners:  # 注意坐标次序cv.drawMarker(imgShiTomas, (point[0], point[1]), (0,0,255), cv.MARKER_CROSS, 10, 2)  # 在点(x,y)标记plt.figure(figsize=(9, 3.3))plt.subplot(131), plt.title("1. Original")plt.axis('off'), plt.imshow(cv.cvtColor(img, cv.COLOR_BGR2RGB))plt.subplot(132), plt.title("2. Harris corners")plt.axis('off'), plt.imshow(cv.cvtColor(imgHarris, cv.COLOR_BGR2RGB))plt.subplot(133), plt.title("3. Shi-tomas corners")plt.axis('off'), plt.imshow(cv.cvtColor(imgShiTomas, cv.COLOR_BGR2RGB))plt.tight_layout()plt.show()  

运行结果:
num of corners by Harris: 589
num of corners by Shi-Tomas: 66

在这里插入图片描述

图17-1 Harris角点检测和Shi-Tomas角点检测


程序说明:

⑴ 程序运行结果如图17-1所示。子图1是原始图像,子图2是Harris角点检测的结果,子图3是Shi-Tomas角点检测的结果。
⑵ 运行结果表明,Harris算法函数检测到的角点数量远大于Shi-Tomas算法函数的结果。这是由于角点周围像素的响应值都很高,都被识别为角点,因此Harris函数会检测到大量重复的角点。


版权声明:
youcans@xupt 原创作品,转载必须标注原文链接:(https://blog.csdn.net/youcans/article/details/140212758)
Copyright 2024 youcans, XUPT
Crated:2024-07-05

《数字图像处理-OpenCV/Python》 独家连载专栏 : https://blog.csdn.net/youcans/category_12418787.html

相关文章:

《数字图像处理-OpenCV/Python》第17章:图像的特征描述

《数字图像处理-OpenCV/Python》第17章&#xff1a;图像的特征描述 本书京东 优惠购书链接 https://item.jd.com/14098452.html 本书CSDN 独家连载专栏 https://blog.csdn.net/youcans/category_12418787.html 第17章&#xff1a;图像的特征描述 特征检测与匹配是计算机视觉的…...

考研数学什么时候开始强化?如何保证进度不掉队?

晚了。我是实在人&#xff0c;不给你胡乱吹&#xff0c;虽然晚了&#xff0c;但相信我&#xff0c;还有的救。 实话实说&#xff0c;从七月中旬考研数一复习完真的有点悬&#xff0c;需要超级高效快速... 数二的时间也有点紧张... 中间基本没有试错的时间&#xff0c;让你换…...

Node.js的下载、安装和配置

天行健&#xff0c;君子以自强不息&#xff1b;地势坤&#xff0c;君子以厚德载物。 每个人都有惰性&#xff0c;但不断学习是好好生活的根本&#xff0c;共勉&#xff01; 文章均为学习整理笔记&#xff0c;分享记录为主&#xff0c;如有错误请指正&#xff0c;共同学习进步。…...

java.util.Properties类介绍

java.util.Properties 是 Java 编程语言中的一个类,用于管理应用程序的配置信息,它继承自 java.util.Hashtable 类,因此它也是基于键值对的数据结构。主要用途是存储应用程序的配置参数,比如数据库连接信息、用户设置等。 以下是 Properties 类的一些主要特点和用法: 存储…...

SpringBoot后端验证码-防止密码爆破功能

一、简介 为了防止网站的用户被通过密码典爆破。引入验证码的功能是十分有必要的。而前端的验证码又仅仅是只防君子不防小人。通过burpsuit等工具很容易就会被绕过。所以后端实现的验证码才是对用户信息安全的一大重要保障。 实现思路&#xff1a; 1.引入图形生成的依赖 2.生成…...

ChatEval:通过多代理辩论提升LLM文本评估质量

论文地址:ChatEval: Towards Better LLM-based Evaluators through Multi-Agent Debate | OpenReviewText evaluation has historically posed significant challenges, often demanding substantial labor and time cost. With the emergence of large language models (LLMs…...

关于美国服务器IP的几个常见问题

在租用美国服务器时&#xff0c;与之密切相关的一个要素就是IP&#xff0c;关于IP的问题总是有人问起&#xff0c;这里列举几项常见的问题&#xff0c;以供参考。 一、IP收费吗&#xff1f; 一般情况下&#xff0c;在租用服务器时&#xff0c;会赠送几个IP&#xff0c;因为这些…...

redis运维:sentinel模式如何查看所有从节点

1. 连接到sentinel redis-cli -h sentinel_host -p sentinel_port如&#xff1a; redis-cli -h {域名} -p 200182. 发现Redis主服务器 连接到哨兵后&#xff0c;我们可以使用SENTINEL get-master-addr-by-name命令来获取当前的Redis主服务器的地址。 SENTINEL get-master-a…...

价格疑云?格行WiFi创始人亲解谜团,性价比之王如何炼成?

随身wifi行业乱象频出&#xff0c;作为行业领跑品牌的格行随身wifi&#xff0c;关于价格问题一直备受质疑。关于设备上的“格行自有格行的骄傲”也被外界认定为是自大&#xff0c;甚至发展的线下一万多家门店也被同行不认可。近日&#xff0c;企业财经专访记者有幸采访了格行随…...

揭秘“消费即赚”的循环购模式

大家好&#xff0c;我是吴军&#xff0c;今天我将带您深入探索一种颠覆传统的新型商业模式——循环购模式。在这个模式中&#xff0c;消费者不仅能享受到购物的乐趣&#xff0c;还能通过消费获得实实在在的回报&#xff0c;甚至实现“边消费边赚钱”的奇妙体验。您是否好奇&…...

javaweb个人主页设计(html+css+js)

目录 1 前言和要求 1.1 前言 1.2 设计要求 2 预览 2.1 主页页面 2.2 个人简介 2.3 个人爱好 2.4 个人成绩有代码&#xff0c;但是图片已省略&#xff0c;可以根据自己情况添加 2.5 收藏夹 3 代码实现 3.1 主页 3.2 个人简介 3.3 个人爱好 3.4 个人成绩&#xff…...

Android常用设计模式(小白必看)

不要担心冗长&#xff0c;3分钟解决面试和学习问题&#xff0c;收藏再看 目的&#xff1a;当作一种模板&#xff0c;结合自身特点&#xff0c;针对项目需求来使用 目录 单例模式 特点&#xff1a; 实现方式&#xff1a; 1、饿汉式 2、线程安全的懒汉式 3、双重校验锁 使…...

swift获取app网络和本地网络权限

请求蓝牙权限&#xff1a; //蓝牙if #available(iOS 13.1, *) {let autostate CBManager.authorizationif(autostate .notDetermined){print("")self.manager CBCentralManager(delegate: nil, queue: DispatchQueue.main,options: [CBCentralManagerOptionShowPo…...

用LangGraph、 Ollama,构建个人的 AI Agent

如果你还记得今年的 Google I/O大会&#xff0c;你肯定注意到了他们今年发布的 Astra&#xff0c;一个人工智能体&#xff08;AI Agent&#xff09;。事实上&#xff0c;目前最新的 GPT-4o 也是个 AI Agent。 现在各大科技公司正在投入巨额资金来创建人工智能体&#xff08;AI …...

ubuntu20.04系统编译yolov8-obb.cpp代码记录

任务内容 在做ncnn-yolov8-obb模型安卓端移植的过程中&#xff0c;对开源代码进行调试。为了确认开源代码yolov8-obb.cpp可以移植开发&#xff0c;先对代码进行复现。因此在linux系统下编译yolov8-obb.cpp代码&#xff0c;验证项目中的代码是可运行的。然后再把这个代码中的模…...

JavaScript的数组与函数

数组 <script type"text/javascript">/** 知识点&#xff1a;数组* 理解&#xff1a;一维数组的容器* 概念&#xff1a;* 1.数组中的数据叫做元素* 2.元素都有编号叫做下标/索引* 3.下标从0开始* 注意&#xff1a;* 1.数组作为数据的容器…...

opencv--把cv::Mat数据转为二进制数据的保存和读取

保存 #include <opencv2/opencv.hpp> #include <iostream> #include <fstream>void saveMatToBinary(const cv::Mat& mat, const std::string& filename) {std::ofstream ofs(filename, std::ios::binary);if (!ofs.is_open()) {std::cerr <<…...

【微信小程序开发实战项目】——个人中心页面的制作

&#x1f468;‍&#x1f4bb;个人主页&#xff1a;开发者-曼亿点 &#x1f468;‍&#x1f4bb; hallo 欢迎 点赞&#x1f44d; 收藏⭐ 留言&#x1f4dd; 加关注✅! &#x1f468;‍&#x1f4bb; 本文由 曼亿点 原创 &#x1f468;‍&#x1f4bb; 收录于专栏&#xff1a…...

基于MCU平台的HMI开发的性能优化与实战(下)

继上篇《基于MCU平台的HMI开发的性能优化与实战&#xff08;上&#xff09;》深入探讨了提升MCU平台HMI开发效率和应用性能的策略后&#xff0c;本文将专注于NXP i.MX RT1170 MCU平台的仪表盘开发实践。我们将重点介绍Qt for MCUs的优化技巧&#xff0c;展示如何通过实际案例应…...

评估测试用例有效性 5个方面

评估测试用例的有效性是确保软件测试活动能够达到预期目标的关键步骤&#xff0c;有助于测试团队优化测试计划&#xff0c;提高测试效率&#xff0c;减少返工&#xff0c;节省成本。如果缺乏对测试用例的有效性评估&#xff0c;可能会导致测试用例无法覆盖关键功能点&#xff0…...

深度学习在微纳光子学中的应用

深度学习在微纳光子学中的主要应用方向 深度学习与微纳光子学的结合主要集中在以下几个方向&#xff1a; 逆向设计 通过神经网络快速预测微纳结构的光学响应&#xff0c;替代传统耗时的数值模拟方法。例如设计超表面、光子晶体等结构。 特征提取与优化 从复杂的光学数据中自…...

JavaSec-RCE

简介 RCE(Remote Code Execution)&#xff0c;可以分为:命令注入(Command Injection)、代码注入(Code Injection) 代码注入 1.漏洞场景&#xff1a;Groovy代码注入 Groovy是一种基于JVM的动态语言&#xff0c;语法简洁&#xff0c;支持闭包、动态类型和Java互操作性&#xff0c…...

【Python】 -- 趣味代码 - 小恐龙游戏

文章目录 文章目录 00 小恐龙游戏程序设计框架代码结构和功能游戏流程总结01 小恐龙游戏程序设计02 百度网盘地址00 小恐龙游戏程序设计框架 这段代码是一个基于 Pygame 的简易跑酷游戏的完整实现,玩家控制一个角色(龙)躲避障碍物(仙人掌和乌鸦)。以下是代码的详细介绍:…...

对WWDC 2025 Keynote 内容的预测

借助我们以往对苹果公司发展路径的深入研究经验&#xff0c;以及大语言模型的分析能力&#xff0c;我们系统梳理了多年来苹果 WWDC 主题演讲的规律。在 WWDC 2025 即将揭幕之际&#xff0c;我们让 ChatGPT 对今年的 Keynote 内容进行了一个初步预测&#xff0c;聊作存档。等到明…...

TRS收益互换:跨境资本流动的金融创新工具与系统化解决方案

一、TRS收益互换的本质与业务逻辑 &#xff08;一&#xff09;概念解析 TRS&#xff08;Total Return Swap&#xff09;收益互换是一种金融衍生工具&#xff0c;指交易双方约定在未来一定期限内&#xff0c;基于特定资产或指数的表现进行现金流交换的协议。其核心特征包括&am…...

ElasticSearch搜索引擎之倒排索引及其底层算法

文章目录 一、搜索引擎1、什么是搜索引擎?2、搜索引擎的分类3、常用的搜索引擎4、搜索引擎的特点二、倒排索引1、简介2、为什么倒排索引不用B+树1.创建时间长,文件大。2.其次,树深,IO次数可怕。3.索引可能会失效。4.精准度差。三. 倒排索引四、算法1、Term Index的算法2、 …...

Ascend NPU上适配Step-Audio模型

1 概述 1.1 简述 Step-Audio 是业界首个集语音理解与生成控制一体化的产品级开源实时语音对话系统&#xff0c;支持多语言对话&#xff08;如 中文&#xff0c;英文&#xff0c;日语&#xff09;&#xff0c;语音情感&#xff08;如 开心&#xff0c;悲伤&#xff09;&#x…...

JUC笔记(上)-复习 涉及死锁 volatile synchronized CAS 原子操作

一、上下文切换 即使单核CPU也可以进行多线程执行代码&#xff0c;CPU会给每个线程分配CPU时间片来实现这个机制。时间片非常短&#xff0c;所以CPU会不断地切换线程执行&#xff0c;从而让我们感觉多个线程是同时执行的。时间片一般是十几毫秒(ms)。通过时间片分配算法执行。…...

用机器学习破解新能源领域的“弃风”难题

音乐发烧友深有体会&#xff0c;玩音乐的本质就是玩电网。火电声音偏暖&#xff0c;水电偏冷&#xff0c;风电偏空旷。至于太阳能发的电&#xff0c;则略显朦胧和单薄。 不知你是否有感觉&#xff0c;近两年家里的音响声音越来越冷&#xff0c;听起来越来越单薄&#xff1f; —…...

【Go语言基础【12】】指针:声明、取地址、解引用

文章目录 零、概述&#xff1a;指针 vs. 引用&#xff08;类比其他语言&#xff09;一、指针基础概念二、指针声明与初始化三、指针操作符1. &&#xff1a;取地址&#xff08;拿到内存地址&#xff09;2. *&#xff1a;解引用&#xff08;拿到值&#xff09; 四、空指针&am…...