点云下采样有损压缩
转自本人博客:点云下采样有损压缩
点云下采样是通过一定规则对原点云数据进行再采样,减少点云个数,降低点云稀疏程度,减小点云数据大小。
1. 体素下采样(Voxel Down Sample)
std::shared_ptr<PointCloud> VoxelDownSample (double voxel_size) const;
voxel_size为体素(体积元素)的尺寸大小,体素的尺寸越大,下采样的倍数越大,点云也就越稀疏。
相当于每隔一定的距离采集一个点。
示例:
std::shared_ptr<open3d::geometry::PointCloud> pcd = nullptr;
open3d::io::ReadPointCloud("rabbit.pcd", *pcd);
double voxelSize = 0.05;
pcd = pcd->VoxelDownSample(voxelSize);
2. 均匀下采样(Uniform Down Sample)
std::shared_ptr<PointCloud> UniformDownSample (size_t every_k_points) const;
every_k_points为隔着的点数目,每隔every_k_points个点,保留一个点。
示例:
std::shared_ptr<open3d::geometry::PointCloud> pcd = nullptr;
open3d::io::ReadPointCloud("rabbit.pcd", *pcd);
size_t everyKPoints = 10;
pcd = pcd->UniformDownSample(everyKPoints);
3. 随机下采样(Random Down Sample)
std::shared_ptr<PointCloud> RandomDownSample (double sampling_ratio) const;
sampling_ratio为采样的比率,随机保留点,直至达成指定比率。
示例:
std::shared_ptr<open3d::geometry::PointCloud> pcd = nullptr;
open3d::io::ReadPointCloud("rabbit.pcd", *pcd);
double samplingRatio = 0.2;
pcd = pcd->RandomDownSample(samplingRatio);
4. 最远点下采样(FarthestPoint Down Sample)
std::shared_ptr<PointCloud> FarthestPointDownSample (size_t num_samples) const;
num_samples为采样的点数。
首先随机选择一个点,其次,在剩下点中寻找最远的点,再去再剩下点中找到同时离这两个点最远的点……,以此类推,直到满足采样点个数。
示例:
std::shared_ptr<open3d::geometry::PointCloud> pcd = nullptr;
open3d::io::ReadPointCloud("rabbit.pcd", *pcd);
size_t numSamples = 1000;
pcd = pcd->FarthestPointDownSample(numSamples);
相关文章:
点云下采样有损压缩
转自本人博客:点云下采样有损压缩 点云下采样是通过一定规则对原点云数据进行再采样,减少点云个数,降低点云稀疏程度,减小点云数据大小。 1. 体素下采样(Voxel Down Sample) std::shared_ptr<PointClo…...
AutoHotKey自动热键(六)转义符号
转义符号 符号说明,, (原义的逗号). 注意: 在命令最后一个参数中的逗号不需要转义, 因为程序知道把它们作为原义处理. 对于 MsgBox 所有参数同样如此, 因为它会智能的处理逗号.%% (原义的百分号) (原义的重音符; 即两个连续的转义符产生单个原义字符);; (原义的分号). 注意: 仅…...

第16章 主成分分析:四个案例及课后习题
1.假设 x x x为 m m m 维随机变量,其均值为 μ \mu μ,协方差矩阵为 Σ \Sigma Σ。 考虑由 m m m维随机变量 x x x到 m m m维随机变量 y y y的线性变换 y i α i T x ∑ k 1 m α k i x k , i 1 , 2 , ⋯ , m y _ { i } \alpha _ { i } ^ { T } …...

股票分析系统设计方案大纲与细节
股票分析系统设计方案大纲与细节 一、引言 随着互联网和金融行业的迅猛发展,股票市场已成为重要的投资渠道。投资者在追求财富增值的过程中,对股票市场的分析和预测需求日益增加。因此,设计并实现一套高效、精准的股票分析系统显得尤为重要。本设计方案旨在提出一个基于大…...
.gitmodules文件
.gitmodules文件在Git仓库中的作用 .gitmodules 文件是 Git 版本控制系统中用来跟踪和管理子模块的配置文件。子模块允许你将一个 Git 仓库嵌套在另一个仓库中,这样可以方便地管理多个项目之间的依赖关系。 在 .gitmodules 文件中,通常会记录每个子模块…...
STM32 SPI世界:W25Q64 Flash存储器的硬件与软件集成策略
摘要 在嵌入式系统设计中,选择合适的存储解决方案对于确保数据的安全性和系统的可靠性至关重要。W25Q64 Flash存储器因其高性能和大容量成为STM32微控制器项目中的热门选择。本文将深入探讨STM32与W25Q64 Flash存储器的硬件连接、软件集成以及SPI通信的最佳实践。 …...

【计算机网络仿真】b站湖科大教书匠思科Packet Tracer——实验17 开放最短路径优先OSPF
一、实验目的 1.验证OSPF协议的作用; 二、实验要求 1.使用Cisco Packet Tracer仿真平台; 2.观看B站湖科大教书匠仿真实验视频,完成对应实验。 三、实验内容 1.构建网络拓扑; 2.验证OSPF协议的作用。 四、实验步骤 1.构建网…...
ChatGPT对话:python程序模拟操作网页弹出对话框
【编者按】单击一网页中的按钮,弹出对话框网页,再单击其中的“Yes”按钮,对话框关闭,请求并获取新网页。 可能ChatGPT第一次没有正确理解描述问题的含义,再次说明后,程序编写就正确了。 1问:pyt…...

利用亚马逊云科技云原生Serverless代码托管服务开发OpenAI ChatGPT-4o应用
今天小李哥继续介绍国际上主流云计算平台亚马逊云科技AWS上的热门生成式AI应用开发架构。上次小李哥分享了利用谷歌云serverless代码托管服务Cloud Functions构建Gemini Pro API,这次我将介绍如何利用亚马逊的云原生服务Lambda调用OpenAI的最新模型ChatGPT 4o。…...

Selenium 切换 frame/iframe
环境: Python 3.8 selenium3.141.0 urllib31.26.19说明: driver.switch_to.frame() # 将当前定位的主体切换为frame/iframe表单的内嵌页面中 driver.switch_to.default_content() # 跳回最外层的页面# 判断元素是否在 frame/ifame 中 # 126 邮箱为例 # …...
VOI(Virtual Operating System Infrastructure,虚拟操作系统基础架构)
VOI(Virtual Operating System Infrastructure,虚拟操作系统基础架构)架构在桌面虚拟化领域具有其独特的优势,使得它在某些场景下表现尤为出色。以下是几个具体场景: 1. 重载性能需求场景 表现: 高效利用…...

迭代器模式(大话设计模式)C/C++版本
迭代器模式 C #include <iostream> #include <string> #include <vector>using namespace std;// 迭代抽象类,用于定义得到开始对象、得到下一个对象、判断是否到结尾、当前对象等抽象方法,统一接口 class Iterator { public:Iterator(){};virtu…...

vue学习day04-计算属性、computed计算属性与methods方法、计算属性完整写法
10、计算属性 (1)概念: 基于现有的数据,计算出来的新属性。依赖于数据变化,自动重新计算。 (计算属性->可以将一段求值的代码进行封装) (2)语法: 1&a…...
关于力扣150题目——逆波兰表达式求值Java实现的三种解法
题目介绍 逆波兰表达式是一种后缀表达式,其运算符位于操作数之后。力扣150题目要求我们实现一个函数,计算给定逆波兰表达式的值。本文将介绍三种不同的Java实现方法来解决这个问题。 解法一:使用栈 这是最直观和常见的解法,使用…...

FTP与TFTP
1、TFTP(简单文件传输协议) TFTP是TCP/IP协议族中一个用来在客户机与服务器之间进行简单文件传输的协议,提供不复杂、开销不大的文件传输服务。 基于UDP协议 端口号:69 特点:简单、轻量级、易于实现 传输过程&…...

【Linux】System V信号量详解以及semget()、semctl()和semop()函数讲解
💐 🌸 🌷 🍀 🌹 🌻 🌺 🍁 🍃 🍂 🌿 🍄🍝 🍛 🍤 📃个人主页 :阿然成长日记 …...
JAVA预编译简单理解
目录 一、JSP预编译 二、JDBC预编译 一、JSP预编译 JSP(JavaServer Pages)是一种动态网页技术标准,它允许将Java代码嵌入到HTML页面中。当第一次请求一个JSP页面时,Web服务器(如Tomcat)会将JSP页面转换成一…...

nvm 管理多版本 node
1、下载 先不安装node 下载 nvm 1.1.10-setup.zip 解压:nvm:https://nvm.uihtm.com/ 新建nodejs/node、nodejs/nvm文件夹用于存放node版本和nvm安装路径 安装nvm:上述链接有安装教程 查看是否安装成功:重新打开cmd 输入 nvm nv…...

C++中的多重继承和虚继承:横向继承、纵向继承和联合继承;虚继承
多重继承 A.横向多重继承: B.纵向多重继承: C.联合多重继承: 因为 single 和 waiter 都继承了一个 worker 组件,因此 SingingWaiter 将包含两个 worker 组件,那么将派生类对象的地址赋给基类指针将出现二义性 那么如何…...
利用node连接mongodb实现一个小型后端服务系统demo
http 请求 实现get请求数据库数据;实现添加数据实现编辑数据实现删除数据实现导出txt文件、Excel文件实现查询数据库数据并利用导出为excel文件 node 版本 16.16.0 node 版本 18.16.0 会连接 MongoDB 数据库错误。 Connected to MongoDB failed MongoServerSele…...
Android Wi-Fi 连接失败日志分析
1. Android wifi 关键日志总结 (1) Wi-Fi 断开 (CTRL-EVENT-DISCONNECTED reason3) 日志相关部分: 06-05 10:48:40.987 943 943 I wpa_supplicant: wlan0: CTRL-EVENT-DISCONNECTED bssid44:9b:c1:57:a8:90 reason3 locally_generated1解析: CTR…...
day52 ResNet18 CBAM
在深度学习的旅程中,我们不断探索如何提升模型的性能。今天,我将分享我在 ResNet18 模型中插入 CBAM(Convolutional Block Attention Module)模块,并采用分阶段微调策略的实践过程。通过这个过程,我不仅提升…...

8k长序列建模,蛋白质语言模型Prot42仅利用目标蛋白序列即可生成高亲和力结合剂
蛋白质结合剂(如抗体、抑制肽)在疾病诊断、成像分析及靶向药物递送等关键场景中发挥着不可替代的作用。传统上,高特异性蛋白质结合剂的开发高度依赖噬菌体展示、定向进化等实验技术,但这类方法普遍面临资源消耗巨大、研发周期冗长…...

2025 后端自学UNIAPP【项目实战:旅游项目】6、我的收藏页面
代码框架视图 1、先添加一个获取收藏景点的列表请求 【在文件my_api.js文件中添加】 // 引入公共的请求封装 import http from ./my_http.js// 登录接口(适配服务端返回 Token) export const login async (code, avatar) > {const res await http…...

令牌桶 滑动窗口->限流 分布式信号量->限并发的原理 lua脚本分析介绍
文章目录 前言限流限制并发的实际理解限流令牌桶代码实现结果分析令牌桶lua的模拟实现原理总结: 滑动窗口代码实现结果分析lua脚本原理解析 限并发分布式信号量代码实现结果分析lua脚本实现原理 双注解去实现限流 并发结果分析: 实际业务去理解体会统一注…...
土地利用/土地覆盖遥感解译与基于CLUE模型未来变化情景预测;从基础到高级,涵盖ArcGIS数据处理、ENVI遥感解译与CLUE模型情景模拟等
🔍 土地利用/土地覆盖数据是生态、环境和气象等诸多领域模型的关键输入参数。通过遥感影像解译技术,可以精准获取历史或当前任何一个区域的土地利用/土地覆盖情况。这些数据不仅能够用于评估区域生态环境的变化趋势,还能有效评价重大生态工程…...

NLP学习路线图(二十三):长短期记忆网络(LSTM)
在自然语言处理(NLP)领域,我们时刻面临着处理序列数据的核心挑战。无论是理解句子的结构、分析文本的情感,还是实现语言的翻译,都需要模型能够捕捉词语之间依时序产生的复杂依赖关系。传统的神经网络结构在处理这种序列依赖时显得力不从心,而循环神经网络(RNN) 曾被视为…...

ArcGIS Pro制作水平横向图例+多级标注
今天介绍下载ArcGIS Pro中如何设置水平横向图例。 之前我们介绍了ArcGIS的横向图例制作:ArcGIS横向、多列图例、顺序重排、符号居中、批量更改图例符号等等(ArcGIS出图图例8大技巧),那这次我们看看ArcGIS Pro如何更加快捷的操作。…...

RNN避坑指南:从数学推导到LSTM/GRU工业级部署实战流程
本文较长,建议点赞收藏,以免遗失。更多AI大模型应用开发学习视频及资料,尽在聚客AI学院。 本文全面剖析RNN核心原理,深入讲解梯度消失/爆炸问题,并通过LSTM/GRU结构实现解决方案,提供时间序列预测和文本生成…...

深度学习水论文:mamba+图像增强
🧀当前视觉领域对高效长序列建模需求激增,对Mamba图像增强这方向的研究自然也逐渐火热。原因在于其高效长程建模,以及动态计算优势,在图像质量提升和细节恢复方面有难以替代的作用。 🧀因此短时间内,就有不…...