点云下采样有损压缩
转自本人博客:点云下采样有损压缩
点云下采样是通过一定规则对原点云数据进行再采样,减少点云个数,降低点云稀疏程度,减小点云数据大小。
1. 体素下采样(Voxel Down Sample)
std::shared_ptr<PointCloud> VoxelDownSample (double voxel_size) const;
voxel_size为体素(体积元素)的尺寸大小,体素的尺寸越大,下采样的倍数越大,点云也就越稀疏。
相当于每隔一定的距离采集一个点。
示例:
std::shared_ptr<open3d::geometry::PointCloud> pcd = nullptr;
open3d::io::ReadPointCloud("rabbit.pcd", *pcd);
double voxelSize = 0.05;
pcd = pcd->VoxelDownSample(voxelSize);
2. 均匀下采样(Uniform Down Sample)
std::shared_ptr<PointCloud> UniformDownSample (size_t every_k_points) const;
every_k_points为隔着的点数目,每隔every_k_points个点,保留一个点。
示例:
std::shared_ptr<open3d::geometry::PointCloud> pcd = nullptr;
open3d::io::ReadPointCloud("rabbit.pcd", *pcd);
size_t everyKPoints = 10;
pcd = pcd->UniformDownSample(everyKPoints);
3. 随机下采样(Random Down Sample)
std::shared_ptr<PointCloud> RandomDownSample (double sampling_ratio) const;
sampling_ratio为采样的比率,随机保留点,直至达成指定比率。
示例:
std::shared_ptr<open3d::geometry::PointCloud> pcd = nullptr;
open3d::io::ReadPointCloud("rabbit.pcd", *pcd);
double samplingRatio = 0.2;
pcd = pcd->RandomDownSample(samplingRatio);
4. 最远点下采样(FarthestPoint Down Sample)
std::shared_ptr<PointCloud> FarthestPointDownSample (size_t num_samples) const;
num_samples为采样的点数。
首先随机选择一个点,其次,在剩下点中寻找最远的点,再去再剩下点中找到同时离这两个点最远的点……,以此类推,直到满足采样点个数。
示例:
std::shared_ptr<open3d::geometry::PointCloud> pcd = nullptr;
open3d::io::ReadPointCloud("rabbit.pcd", *pcd);
size_t numSamples = 1000;
pcd = pcd->FarthestPointDownSample(numSamples);
相关文章:
点云下采样有损压缩
转自本人博客:点云下采样有损压缩 点云下采样是通过一定规则对原点云数据进行再采样,减少点云个数,降低点云稀疏程度,减小点云数据大小。 1. 体素下采样(Voxel Down Sample) std::shared_ptr<PointClo…...
AutoHotKey自动热键(六)转义符号
转义符号 符号说明,, (原义的逗号). 注意: 在命令最后一个参数中的逗号不需要转义, 因为程序知道把它们作为原义处理. 对于 MsgBox 所有参数同样如此, 因为它会智能的处理逗号.%% (原义的百分号) (原义的重音符; 即两个连续的转义符产生单个原义字符);; (原义的分号). 注意: 仅…...
第16章 主成分分析:四个案例及课后习题
1.假设 x x x为 m m m 维随机变量,其均值为 μ \mu μ,协方差矩阵为 Σ \Sigma Σ。 考虑由 m m m维随机变量 x x x到 m m m维随机变量 y y y的线性变换 y i α i T x ∑ k 1 m α k i x k , i 1 , 2 , ⋯ , m y _ { i } \alpha _ { i } ^ { T } …...
股票分析系统设计方案大纲与细节
股票分析系统设计方案大纲与细节 一、引言 随着互联网和金融行业的迅猛发展,股票市场已成为重要的投资渠道。投资者在追求财富增值的过程中,对股票市场的分析和预测需求日益增加。因此,设计并实现一套高效、精准的股票分析系统显得尤为重要。本设计方案旨在提出一个基于大…...
.gitmodules文件
.gitmodules文件在Git仓库中的作用 .gitmodules 文件是 Git 版本控制系统中用来跟踪和管理子模块的配置文件。子模块允许你将一个 Git 仓库嵌套在另一个仓库中,这样可以方便地管理多个项目之间的依赖关系。 在 .gitmodules 文件中,通常会记录每个子模块…...
STM32 SPI世界:W25Q64 Flash存储器的硬件与软件集成策略
摘要 在嵌入式系统设计中,选择合适的存储解决方案对于确保数据的安全性和系统的可靠性至关重要。W25Q64 Flash存储器因其高性能和大容量成为STM32微控制器项目中的热门选择。本文将深入探讨STM32与W25Q64 Flash存储器的硬件连接、软件集成以及SPI通信的最佳实践。 …...
【计算机网络仿真】b站湖科大教书匠思科Packet Tracer——实验17 开放最短路径优先OSPF
一、实验目的 1.验证OSPF协议的作用; 二、实验要求 1.使用Cisco Packet Tracer仿真平台; 2.观看B站湖科大教书匠仿真实验视频,完成对应实验。 三、实验内容 1.构建网络拓扑; 2.验证OSPF协议的作用。 四、实验步骤 1.构建网…...
ChatGPT对话:python程序模拟操作网页弹出对话框
【编者按】单击一网页中的按钮,弹出对话框网页,再单击其中的“Yes”按钮,对话框关闭,请求并获取新网页。 可能ChatGPT第一次没有正确理解描述问题的含义,再次说明后,程序编写就正确了。 1问:pyt…...
利用亚马逊云科技云原生Serverless代码托管服务开发OpenAI ChatGPT-4o应用
今天小李哥继续介绍国际上主流云计算平台亚马逊云科技AWS上的热门生成式AI应用开发架构。上次小李哥分享了利用谷歌云serverless代码托管服务Cloud Functions构建Gemini Pro API,这次我将介绍如何利用亚马逊的云原生服务Lambda调用OpenAI的最新模型ChatGPT 4o。…...
Selenium 切换 frame/iframe
环境: Python 3.8 selenium3.141.0 urllib31.26.19说明: driver.switch_to.frame() # 将当前定位的主体切换为frame/iframe表单的内嵌页面中 driver.switch_to.default_content() # 跳回最外层的页面# 判断元素是否在 frame/ifame 中 # 126 邮箱为例 # …...
VOI(Virtual Operating System Infrastructure,虚拟操作系统基础架构)
VOI(Virtual Operating System Infrastructure,虚拟操作系统基础架构)架构在桌面虚拟化领域具有其独特的优势,使得它在某些场景下表现尤为出色。以下是几个具体场景: 1. 重载性能需求场景 表现: 高效利用…...
迭代器模式(大话设计模式)C/C++版本
迭代器模式 C #include <iostream> #include <string> #include <vector>using namespace std;// 迭代抽象类,用于定义得到开始对象、得到下一个对象、判断是否到结尾、当前对象等抽象方法,统一接口 class Iterator { public:Iterator(){};virtu…...
vue学习day04-计算属性、computed计算属性与methods方法、计算属性完整写法
10、计算属性 (1)概念: 基于现有的数据,计算出来的新属性。依赖于数据变化,自动重新计算。 (计算属性->可以将一段求值的代码进行封装) (2)语法: 1&a…...
关于力扣150题目——逆波兰表达式求值Java实现的三种解法
题目介绍 逆波兰表达式是一种后缀表达式,其运算符位于操作数之后。力扣150题目要求我们实现一个函数,计算给定逆波兰表达式的值。本文将介绍三种不同的Java实现方法来解决这个问题。 解法一:使用栈 这是最直观和常见的解法,使用…...
FTP与TFTP
1、TFTP(简单文件传输协议) TFTP是TCP/IP协议族中一个用来在客户机与服务器之间进行简单文件传输的协议,提供不复杂、开销不大的文件传输服务。 基于UDP协议 端口号:69 特点:简单、轻量级、易于实现 传输过程&…...
【Linux】System V信号量详解以及semget()、semctl()和semop()函数讲解
💐 🌸 🌷 🍀 🌹 🌻 🌺 🍁 🍃 🍂 🌿 🍄🍝 🍛 🍤 📃个人主页 :阿然成长日记 …...
JAVA预编译简单理解
目录 一、JSP预编译 二、JDBC预编译 一、JSP预编译 JSP(JavaServer Pages)是一种动态网页技术标准,它允许将Java代码嵌入到HTML页面中。当第一次请求一个JSP页面时,Web服务器(如Tomcat)会将JSP页面转换成一…...
nvm 管理多版本 node
1、下载 先不安装node 下载 nvm 1.1.10-setup.zip 解压:nvm:https://nvm.uihtm.com/ 新建nodejs/node、nodejs/nvm文件夹用于存放node版本和nvm安装路径 安装nvm:上述链接有安装教程 查看是否安装成功:重新打开cmd 输入 nvm nv…...
C++中的多重继承和虚继承:横向继承、纵向继承和联合继承;虚继承
多重继承 A.横向多重继承: B.纵向多重继承: C.联合多重继承: 因为 single 和 waiter 都继承了一个 worker 组件,因此 SingingWaiter 将包含两个 worker 组件,那么将派生类对象的地址赋给基类指针将出现二义性 那么如何…...
利用node连接mongodb实现一个小型后端服务系统demo
http 请求 实现get请求数据库数据;实现添加数据实现编辑数据实现删除数据实现导出txt文件、Excel文件实现查询数据库数据并利用导出为excel文件 node 版本 16.16.0 node 版本 18.16.0 会连接 MongoDB 数据库错误。 Connected to MongoDB failed MongoServerSele…...
eNSP-Cloud(实现本地电脑与eNSP内设备之间通信)
说明: 想象一下,你正在用eNSP搭建一个虚拟的网络世界,里面有虚拟的路由器、交换机、电脑(PC)等等。这些设备都在你的电脑里面“运行”,它们之间可以互相通信,就像一个封闭的小王国。 但是&#…...
Objective-C常用命名规范总结
【OC】常用命名规范总结 文章目录 【OC】常用命名规范总结1.类名(Class Name)2.协议名(Protocol Name)3.方法名(Method Name)4.属性名(Property Name)5.局部变量/实例变量(Local / Instance Variables&…...
【论文阅读28】-CNN-BiLSTM-Attention-(2024)
本文把滑坡位移序列拆开、筛优质因子,再用 CNN-BiLSTM-Attention 来动态预测每个子序列,最后重构出总位移,预测效果超越传统模型。 文章目录 1 引言2 方法2.1 位移时间序列加性模型2.2 变分模态分解 (VMD) 具体步骤2.3.1 样本熵(S…...
根据万维钢·精英日课6的内容,使用AI(2025)可以参考以下方法:
根据万维钢精英日课6的内容,使用AI(2025)可以参考以下方法: 四个洞见 模型已经比人聪明:以ChatGPT o3为代表的AI非常强大,能运用高级理论解释道理、引用最新学术论文,生成对顶尖科学家都有用的…...
大数据学习(132)-HIve数据分析
🍋🍋大数据学习🍋🍋 🔥系列专栏: 👑哲学语录: 用力所能及,改变世界。 💖如果觉得博主的文章还不错的话,请点赞👍收藏⭐️留言Ǵ…...
2023赣州旅游投资集团
单选题 1.“不登高山,不知天之高也;不临深溪,不知地之厚也。”这句话说明_____。 A、人的意识具有创造性 B、人的认识是独立于实践之外的 C、实践在认识过程中具有决定作用 D、人的一切知识都是从直接经验中获得的 参考答案: C 本题解…...
laravel8+vue3.0+element-plus搭建方法
创建 laravel8 项目 composer create-project --prefer-dist laravel/laravel laravel8 8.* 安装 laravel/ui composer require laravel/ui 修改 package.json 文件 "devDependencies": {"vue/compiler-sfc": "^3.0.7","axios": …...
10-Oracle 23 ai Vector Search 概述和参数
一、Oracle AI Vector Search 概述 企业和个人都在尝试各种AI,使用客户端或是内部自己搭建集成大模型的终端,加速与大型语言模型(LLM)的结合,同时使用检索增强生成(Retrieval Augmented Generation &#…...
【MATLAB代码】基于最大相关熵准则(MCC)的三维鲁棒卡尔曼滤波算法(MCC-KF),附源代码|订阅专栏后可直接查看
文章所述的代码实现了基于最大相关熵准则(MCC)的三维鲁棒卡尔曼滤波算法(MCC-KF),针对传感器观测数据中存在的脉冲型异常噪声问题,通过非线性加权机制提升滤波器的抗干扰能力。代码通过对比传统KF与MCC-KF在含异常值场景下的表现,验证了后者在状态估计鲁棒性方面的显著优…...
jmeter聚合报告中参数详解
sample、average、min、max、90%line、95%line,99%line、Error错误率、吞吐量Thoughput、KB/sec每秒传输的数据量 sample(样本数) 表示测试中发送的请求数量,即测试执行了多少次请求。 单位,以个或者次数表示。 示例:…...
