当前位置: 首页 > news >正文

大模型一些概念的理解 - 线性层、前向传播、后向传播

文章目录

  • 前言
  • 一、线性层
    • 1. 什么是线性层?
    • 2. 通俗解释
    • 3. 示例
  • 二、前向传播
    • 1. 什么是前向传播?
    • 2. 通俗解释
    • 3. 示例
  • 三、后向传播
    • 1. 什么是后向传播?
    • 2. 通俗解释
    • 3. 具体步骤
  • 四、示例
  • 五、在 PyTorch 中的后向传播


前言

最近提问里有问到一些名词:线性层、前向传播、后向传播。这些实际是神经网络的一些基础概念,我们可以先通过通俗易懂的方式简单了解下它们


一、线性层

1. 什么是线性层?

  • 线性层(Linear Layer)是神经网络中的一种基本层,也称为全连接层(Fully Connected Layer)。
  • 它的工作方式类似于简单的线性方程:y = Wx + b,其中 W 是权重矩阵,x 是输入,b 是偏置项,y 是输出。
  • 线性层的主要任务是将输入的数据通过权重和偏置进行线性变换,从而生成输出。

2. 通俗解释

想象你是一家餐馆的老板,你要根据顾客的点餐数量来计算总价:

  • x 是顾客点的每种菜的数量。
  • W 是每种菜的单价。
  • b 是固定的服务费。

你通过这个公式计算出顾客需要支付的总价,这就相当于线性层的作用。

3. 示例

假设一个线性层输入是3维的,输出是2维的,可以理解为:

  • 输入是一个包含3个数的列表(比如顾客点了3种菜的数量)。
  • 线性层把这3个数转换成另一个包含2个数的列表(比如总价和服务费)。

二、前向传播

1. 什么是前向传播?

  • 前向传播(Forward Propagation)是神经网络计算输出的过程。
  • 它从输入层开始,通过各个隐藏层,最后到达输出层,每一层的输出都是下一层的输入。
  • 这个过程相当于逐层传递和处理信息。

2. 通俗解释

想象你要烤一个蛋糕,过程如下:

第1步: 输入层:你有原材料(比如面粉、鸡蛋、糖)。
第2步: 隐藏层:你按照步骤混合材料、搅拌、烘烤。
第3步: 输出层:你得到一个蛋糕。

前向传播就像这个烤蛋糕的过程,你一步步按照食谱操作,最后得到一个结果。

3. 示例

在一个问答模型中,前向传播的过程如下:

第1步: 输入层:你输入一个问题和一段包含答案的文本。
第2步: 隐藏层:模型(比如 BERT)对这些文本进行处理,理解其中的含义。
第3步: 输出层:模型输出答案的起始位置和结束位置。

三、后向传播

1. 什么是后向传播?

  • 后向传播是一种计算梯度的算法,用于神经网络的训练过程。
  • 它通过计算每个参数对损失函数的影响来更新网络的权重和偏置。
  • 具体来说,它是通过链式法则来计算损失函数相对于每个参数的梯度,然后使用这些梯度来更新参数。

2. 通俗解释

想象你在做一个项目,项目结果不理想,你想知道是哪个步骤出了问题:

1) 结果不好(损失函数的值大)。
2) 逐步回溯,检查每个步骤,找到哪些步骤出了问题(计算梯度)。
3) 修正这些步骤,以便下次能做得更好(更新权重和偏置)。

在这个过程中,你在不断调整和优化每个步骤,确保最终结果越来越好。

3. 具体步骤

1) 计算损失:在前向传播结束后,计算模型的预测结果与真实结果之间的差异,这个差异叫做损失(loss)。
2) 反向计算梯度:从输出层开始,逐层向回计算每个参数对损失的贡献,这个过程称为反向传播。
3) 更新参数:使用优化算法(如梯度下降),根据计算出的梯度更新每个参数,使得损失逐渐减少。

四、示例

假设我们有一个简单的神经网络来预测房价:

  1. 前向传播

    • 输入房子的特征(面积、房龄等)。
    • 网络计算出一个预测的房价。
  2. 计算损失

    • 将预测的房价与实际房价进行比较,计算出差异(损失)。
  3. 后向传播

    • 从输出层开始,计算每个参数(权重和偏置)对损失的贡献。
    • 使用这些梯度来调整参数,使下次预测更加准确。

五、在 PyTorch 中的后向传播

PyTorch 提供了自动微分的功能,通过计算图来支持前向传播和后向传播。

代码示例

import torch
import torch.nn as nn
import torch.optim as optim# 假设我们有一个简单的线性模型
model = nn.Linear(10, 1)  # 输入10维,输出1维
criterion = nn.MSELoss()  # 使用均方误差作为损失函数
optimizer = optim.SGD(model.parameters(), lr=0.01)  # 使用随机梯度下降优化器# 输入和真实输出
inputs = torch.randn(5, 10)  # 随机生成5个样本,每个样本10维
targets = torch.randn(5, 1)  # 随机生成5个真实输出# 前向传播
outputs = model(inputs)
loss = criterion(outputs, targets)# 后向传播
loss.backward()# 更新参数
optimizer.step()

在这个例子中:

  1. 前向传播:计算模型的预测输出 outputs
  2. 计算损失:计算预测输出与真实输出之间的损失 loss
  3. 后向传播:计算损失相对于模型参数的梯度 loss.backward()
  4. 更新参数:使用优化器根据梯度更新模型参数 optimizer.step()

通过这些步骤,模型的参数会逐渐调整,使得预测结果越来越接近真实结果。

希望这个解释能帮助你更好地理解后向传播的概念!

相关文章:

大模型一些概念的理解 - 线性层、前向传播、后向传播

文章目录 前言一、线性层1. 什么是线性层?2. 通俗解释3. 示例 二、前向传播1. 什么是前向传播?2. 通俗解释3. 示例 三、后向传播1. 什么是后向传播?2. 通俗解释3. 具体步骤 四、示例五、在 PyTorch 中的后向传播 前言 最近提问里有问到一些名…...

AWS 云安全性:检测 SSH 暴力攻击

由于开源、低成本、可靠性和灵活性等优势,云基础设施主要由基于linux的机器主导,然而,它们也不能幸免于黑客的攻击,从而影响云的安全性。攻击Linux机器最流行的方法之一是通过SSH通道。 什么是 SSH 安全外壳协议(Sec…...

7.9数据结构

思维导图 作业 doubleloop.h #ifndef __DOUBLELOOP_H__ #define __DOUBLELOOP_H__#include <stdio.h> #include <stdlib.h>typedef int datatype; typedef struct node {union{int len;datatype data;};struct node *pri;//前驱指针struct node *next;//后继指针…...

Python 文件操作:打开数据处理的大门

在 Python 的学习之旅中&#xff0c;文件操作是一个非常实用且必不可少的技能。不论是数据分析还是日常的数据处理&#xff0c;良好的文件操作技巧都能让你的编程之路更加顺畅。今天&#xff0c;我将带你走进 Python 文件操作的世界&#xff0c;不仅教你如何读写文件&#xff0…...

单对以太网连接器多场景应用

单对以太网连接器应用场景概述 单对以太网&#xff08;Single Pair Ethernet&#xff0c;简称SPE&#xff09;作为一种新兴的以太网技术&#xff0c;以其独特的优势在多个领域得到了广泛的应用。SPE通过单对电缆进行数据传输&#xff0c;支持高速数据传输&#xff0c;同时还能…...

Python pip的更新问题

你是否也出现了更新pip的情况 1、提示更新pip版本 pip install --upgrade pip2、更新操作&#xff0c;我操作了 pip install --upgrade pip更新了&#xff0c;等啊等。。。 然后就是连接超时&#xff0c;安装失败 3、我不信&#xff0c;我就要更新&#xff0c;我还要使用镜…...

[Linux][Shell][Shell基础] -- [Shebang][特殊符号][变量][父子Shell]详细讲解

目录 0.前置知识1.Shebang2.Linux特殊符号整理3.变量4.环境变量5.父子shell0.概念1.创建进程列表(创建子shell执行命令) 6.内置命令 vs 外置命令 0.前置知识 #用于注释shell脚本语⾔属于⼀种弱类型语⾔&#xff1a;⽆需声明变量类型&#xff0c;直接定义使⽤shell三剑客&#…...

DS200CVMAG1AEB处理器 控制器 模块

DS200CVMAG1AEB特征&#xff1a; 高性能&#xff1a;采用先进的控制算法和高功率IGBT器件&#xff0c;可提供高电流和精确的运动控制。 高精度&#xff1a;采用高分辨率编码器和位置环路技术&#xff0c;位置精度可达0.1μm&#xff0c;适用于各种精密机械应用&#xff0c;如数…...

阈值分割后配合Connection算子和箭头工具快速知道区域的ID并选择指定区域

代码 dev_close_window () read_image (Image, E:/机器视觉学习/海康视觉平台/二期VM视觉学习/二期VM视觉学习/机器视觉程序/标定相机找圆心和焊头修正相机找圆心之算法软件/标定相机找圆心和焊头修正相机找圆心之算法软件/03 标定相机找圆心/S2/1号机/1.bmp) get_image_size …...

【work】AI八股-神经网络相关

Deep-Learning-Interview-Book/docs/深度学习.md at master amusi/Deep-Learning-Interview-Book GitHub 网上相关总结&#xff1a; 小菜鸡写一写基础深度学习的问题&#xff08;复制大佬的&#xff0c;自己复习用&#xff09; - 知乎 (zhihu.com) CV面试问题准备持续更新贴 …...

【LeetCode】12. 小张刷题计划

稳住&#xff0c;能赢&#xff01;没有经验的同学在面试岗位的时候&#xff0c;总是显得手忙脚乱&#xff0c;所以多练习&#xff0c;把技能提升&#xff0c;眼界提升&#xff0c;接着心态放平和&#xff0c;不要慌张&#xff0c;把面试题目读懂读透彻就会大大提升赢的概率。 1…...

Tomcat部署以及优化

1、tomcat tomcat是用java代码的程序&#xff0c;运行的是java的web服务器 tomcat和php一样都是用来处理动态页面&#xff0c;tomcat也可以做为web应用服务器&#xff0c;开源的 php处理.php为结尾的 tomcat 处理.jsp nginx 处理 .html 2、tomcat的特点和功能 1、servle…...

ubuntu 22 安装 lua 环境 编译lua cjson 模块

在 windows 下使用 cygwin 编译 lua 和 cjson 简直就是灾难&#xff0c;最后还是到 ubuntu 下完成了。 1、下载lua源码&#xff08;我下载的 5.1 版本&#xff0c;后面还有一个小插曲), 直接解压编译&#xff0c;遇到一个 readline.h not found 的问题&#xff0c;需要安装 re…...

地下城游戏中都有哪些类型的服务器?

地下城类型的服务器以其独特的魅力吸引了众多玩家。这些服务器通常基于流行的地下城探险游戏&#xff0c;如《Minecraft》的地下城模式或《Dungeon Fighter Online》等&#xff0c;提供了丰富多样的游戏体验。下面&#xff0c;我们将探讨几种不同类型的地下城服务器及其特点。 …...

大模型面试(二)

这次又接到一个大模型岗位的面试。但是从面试过程来看&#xff0c;现在大模型岗位都要求有相关工作经验&#xff0c;还是太难进了。还是说国内公司早就过了培养人的年代了&#xff1f; 问到了哪些知识点&#xff1a; 开源大模型&#xff1a;项目里用的是浦语大模型&#xff0…...

rsync远程同步--累了,明天继续再写~。

rsync官网链接 rsync(Remote Sync,远程同步)开源快速备份工具&#xff0c;是一个用于本地和远程文件同步的Unix-like命令行程序。它使用“快速数据传输算法”&#xff0c;只发送源和目标之间的差异&#xff0c;因此数据传输非常高效。 可以在不同主机之间镜像同步整 个目录树…...

每日刷题(二分查找,匈牙利算法,逆序对)

目录 1.Sarumans Army 2.Catch That Cow 3.Drying 4.P3386 【模板】二分图最大匹配 5. Swap Dilemma 1.Sarumans Army 3069 -- Sarumans Army (poj.org) 这道题就是要求我们在给的的位置放入 palantir&#xff0c;每个 palantir有R大小的射程范围&#xff0c;要求求出最少…...

LLM应用构建前的非结构化数据处理(三)文档表格的提取

1.学习内容 本节次学习内容来自于吴恩达老师的Preprocessing Unstructured Data for LLM Applications课程&#xff0c;因涉及到非结构化数据的相关处理&#xff0c;遂做学习整理。 本节主要学习pdf中的表格数据处理 2.环境准备 和之前一样&#xff0c;可以参考LLM应用构建前…...

如何从数码相机恢复已删除的照片

照片恢复是恢复已删除照片的最佳工具&#xff0c;它带有恢复 RAW 照片的选项。在本文中&#xff0c;我们将解释如何恢复已删除的照片。 不仅对于专业摄影师&#xff0c;对于像我们这样喜欢捕捉回忆的人来说&#xff0c;瞬间相机都是重要的数码设备。遗憾的是&#xff0c;就像智…...

设计模式使用场景实现示例及优缺点(创建型模式——单例模式、建造者模式、原型模式)

创建型模式 单例模式&#xff08;Singleton Pattern&#xff09; 单例模式&#xff08;Singleton Pattern&#xff09;在Java中的使用场景与在其他编程语言中类似&#xff0c;其主要目的是确保一个类只有一个实例&#xff0c;并提供一个全局的访问点。以下是单例模式的一些常…...

铭豹扩展坞 USB转网口 突然无法识别解决方法

当 USB 转网口扩展坞在一台笔记本上无法识别,但在其他电脑上正常工作时,问题通常出在笔记本自身或其与扩展坞的兼容性上。以下是系统化的定位思路和排查步骤,帮助你快速找到故障原因: 背景: 一个M-pard(铭豹)扩展坞的网卡突然无法识别了,扩展出来的三个USB接口正常。…...

【网络】每天掌握一个Linux命令 - iftop

在Linux系统中&#xff0c;iftop是网络管理的得力助手&#xff0c;能实时监控网络流量、连接情况等&#xff0c;帮助排查网络异常。接下来从多方面详细介绍它。 目录 【网络】每天掌握一个Linux命令 - iftop工具概述安装方式核心功能基础用法进阶操作实战案例面试题场景生产场景…...

Unity3D中Gfx.WaitForPresent优化方案

前言 在Unity中&#xff0c;Gfx.WaitForPresent占用CPU过高通常表示主线程在等待GPU完成渲染&#xff08;即CPU被阻塞&#xff09;&#xff0c;这表明存在GPU瓶颈或垂直同步/帧率设置问题。以下是系统的优化方案&#xff1a; 对惹&#xff0c;这里有一个游戏开发交流小组&…...

从零实现富文本编辑器#5-编辑器选区模型的状态结构表达

先前我们总结了浏览器选区模型的交互策略&#xff0c;并且实现了基本的选区操作&#xff0c;还调研了自绘选区的实现。那么相对的&#xff0c;我们还需要设计编辑器的选区表达&#xff0c;也可以称为模型选区。编辑器中应用变更时的操作范围&#xff0c;就是以模型选区为基准来…...

安宝特方案丨XRSOP人员作业标准化管理平台:AR智慧点检验收套件

在选煤厂、化工厂、钢铁厂等过程生产型企业&#xff0c;其生产设备的运行效率和非计划停机对工业制造效益有较大影响。 随着企业自动化和智能化建设的推进&#xff0c;需提前预防假检、错检、漏检&#xff0c;推动智慧生产运维系统数据的流动和现场赋能应用。同时&#xff0c;…...

【无标题】路径问题的革命性重构:基于二维拓扑收缩色动力学模型的零点隧穿理论

路径问题的革命性重构&#xff1a;基于二维拓扑收缩色动力学模型的零点隧穿理论 一、传统路径模型的根本缺陷 在经典正方形路径问题中&#xff08;图1&#xff09;&#xff1a; mermaid graph LR A((A)) --- B((B)) B --- C((C)) C --- D((D)) D --- A A -.- C[无直接路径] B -…...

Go语言多线程问题

打印零与奇偶数&#xff08;leetcode 1116&#xff09; 方法1&#xff1a;使用互斥锁和条件变量 package mainimport ("fmt""sync" )type ZeroEvenOdd struct {n intzeroMutex sync.MutexevenMutex sync.MutexoddMutex sync.Mutexcurrent int…...

go 里面的指针

指针 在 Go 中&#xff0c;指针&#xff08;pointer&#xff09;是一个变量的内存地址&#xff0c;就像 C 语言那样&#xff1a; a : 10 p : &a // p 是一个指向 a 的指针 fmt.Println(*p) // 输出 10&#xff0c;通过指针解引用• &a 表示获取变量 a 的地址 p 表示…...

uniapp 实现腾讯云IM群文件上传下载功能

UniApp 集成腾讯云IM实现群文件上传下载功能全攻略 一、功能背景与技术选型 在团队协作场景中&#xff0c;群文件共享是核心需求之一。本文将介绍如何基于腾讯云IMCOS&#xff0c;在uniapp中实现&#xff1a; 群内文件上传/下载文件元数据管理下载进度追踪跨平台文件预览 二…...

Python 高级应用10:在python 大型项目中 FastAPI 和 Django 的相互配合

无论是python&#xff0c;或者java 的大型项目中&#xff0c;都会涉及到 自身平台微服务之间的相互调用&#xff0c;以及和第三发平台的 接口对接&#xff0c;那在python 中是怎么实现的呢&#xff1f; 在 Python Web 开发中&#xff0c;FastAPI 和 Django 是两个重要但定位不…...