机器学习——LR、GBDT、SVM、CNN、DNN、RNN、Word2Vec等模型的原理和应用
LR(逻辑回归)
原理:
逻辑回归模型(Logistic Regression, LR)是一种广泛应用于分类问题的统计方法,尤其适用于二分类问题。其核心思想是通过Sigmoid函数将线性回归模型的输出映射到(0,1)区间,从而得到属于某个类别的概率。逻辑回归模型假设数据服从伯努利分布,且样本的概率是Sigmoid函数。
应用:
逻辑回归模型因其简单、可解释性强、易于实现等特点,被广泛应用于机器学习、深度学习、推荐系统、广告预估、智能营销、金融风控、社会学、生物学、经济学等领域。
GBDT(梯度提升决策树)
原理:
GBDT(Gradient Boosting Decision Tree)是一种基于决策树的集成学习算法,属于Boosting类型。它通过叠加多个决策树的预测结果得出最终的预测结果。GBDT的训练过程基于梯度下降的思想,使用加法模型和函数优化方法,每次训练都基于之前训练结果来进行优化。
应用:
GBDT在分类、回归等多种预测任务中都有出色的表现,是许多复杂预测问题的首选算法之一。在生产环境中,GBDT的变种如XGBoost和LightGBM等算法也被广泛应用。
SVM(支持向量机)
原理:
支持向量机(Support Vector Machine, SVM)是一种经典的监督学习算法,用于解决二分类和多分类问题。其核心思想是在特征空间中找到一个最优的超平面来进行分类,并且间隔最大。SVM通过求解凸二次规划问题来找到这个最优超平面,使得分类间隔最大化。
应用:
SVM在文本分类、图像分类、生物信息学等领域都有广泛的应用。特别是在中小型复杂数据集的分类问题上,SVM表现出了良好的性能。
CNN(卷积神经网络)
原理:
卷积神经网络(Convolutional Neural Networks, CNN)是一种前馈神经网络,具有层次结构,主要由卷积层、池化层、全连接层等组成。CNN通过卷积操作提取输入数据的局部特征,并通过池化操作降低特征图的维度,从而实现对输入数据的有效表示。
应用:
CNN在图像识别、语音识别、自然语言处理等领域都有广泛的应用。特别是在图像识别方面,CNN通过训练可以学习到丰富的特征表示,从而实现对图像的有效分类和识别。
DNN(深度神经网络)
原理:
深度神经网络(Deep Neural Networks, DNN)是一种包含多个隐藏层的神经网络模型。它通过多层非线性变换将输入数据映射到输出数据,从而实现对复杂函数的逼近。DNN的训练过程通常使用反向传播算法和梯度下降法来优化网络参数。
应用:
DNN在图像识别、语音识别、自然语言处理等领域都有广泛的应用。随着计算能力的提升和大数据的兴起,DNN在解决复杂预测问题方面表现出了强大的能力。
RNN(循环神经网络)
原理:
循环神经网络(Recurrent Neural Networks, RNN)是一种适用于序列数据处理的神经网络模型。它通过引入循环连接来捕捉序列数据中的时间依赖关系,从而实现对序列数据的建模和预测。
应用:
RNN在自然语言处理、语音识别、时间序列分析等领域都有广泛的应用。特别是在自然语言处理方面,RNN能够有效地捕捉句子中的语义信息,从而实现对文本的有效理解和生成。
Word2Vec
原理:
Word2Vec是一种用于学习词向量表示的神经网络模型。它通过将词映射到高维空间中的向量来捕捉词之间的语义关系。Word2Vec通常包括CBOW(Continuous Bag of Words)和Skip-gram两种模型结构。
应用:
Word2Vec在自然语言处理领域有广泛的应用,如文本分类、情感分析、机器翻译等。通过学习到的词向量表示,可以方便地实现文本数据的向量化处理,从而便于后续的机器学习任务。
以上是对LR、GBDT、SVM、CNN、DNN、RNN、Word2Vec等模型原理和应用的简要介绍。这些模型各有特点和应用场景,在实际应用中需要根据具体问题的需求来选择合适的模型。
相关文章:
机器学习——LR、GBDT、SVM、CNN、DNN、RNN、Word2Vec等模型的原理和应用
LR(逻辑回归) 原理: 逻辑回归模型(Logistic Regression, LR)是一种广泛应用于分类问题的统计方法,尤其适用于二分类问题。其核心思想是通过Sigmoid函数将线性回归模型的输出映射到(0,1)区间,从…...
揭秘SQL Server数据库选项:性能与行为的调控者
揭秘SQL Server数据库选项:性能与行为的调控者 在SQL Server的世界中,数据库选项是那些可以调整以优化数据库性能和行为的设置。它们是数据库管理员和开发者的得力助手,通过精细调控,可以显著提升数据库的响应速度和资源利用率。…...
【排序 - 选择排序优化版(利用堆排序)】
结合选择排序和堆排序的思路,可以通过利用堆数据结构来优化选择排序的过程,使得排序算法更加高效。在这种结合中,我们利用堆的特性来快速定位和选择未排序部分的最小元素,避免了选择排序中每次线性搜索的开销。 选择排序和堆排序…...
PHP编程开发工具有哪些?
PHP的开发工具种类繁多,涵盖了从集成开发环境(IDE)、代码编辑器、调试器到版本控制工具和数据库管理工具等多个方面。以下是一些常见的PHP开发工具: 1. 集成开发环境(IDE) PhpStorm:由JetBrai…...
火柴棒图python绘画
使用Python绘制二项分布的概率质量函数(PMF) 在这篇博客中,我们将探讨如何使用Python中的scipy库和matplotlib库来绘制二项分布的概率质量函数(PMF)。二项分布是统计学中常见的离散概率分布,描述了在固定次…...
Nginx七层(应用层)反向代理:UWSGI代理uwsgi_pass篇
Nginx七层(应用层)反向代理 UWSGI代理uwsgi_pass篇 - 文章信息 - Author: 李俊才 (jcLee95) Visit me at CSDN: https://jclee95.blog.csdn.netMy WebSite:http://thispage.tech/Email: 291148484163.com. Shenzhen ChinaAddress of this a…...
Effective C++笔记之二十一:One Definition Rule(ODR)
ODR细节有点复杂,跨越各种情况。基本内容如下: ●普通(非模板)的noninline函数和成员函数、noninline全局变量、静态数据成员在整个程序中都应当只定义一次。 ●class类型(包括structs和unions)、模板&…...
探索未来:Transformer模型在智能环境监测的革命性应用
探索未来:Transformer模型在智能环境监测的革命性应用 在当今数字化时代,环境监测正逐渐从传统的人工检测方式转变为智能化、自动化的系统。Transformer模型,作为深度学习领域的一颗新星,其在自然语言处理(NLP&#x…...
Nginx中文URL请求404
这两天正在搞我的静态网站。方案是:从思源笔记Markdown笔记,用MkOcs build成静态网站,上传到到Nginx服务器。遇到一个问题:URL含有中文会404,全英文URL则正常访问。 比如: 设置了utf-8 ht…...
33. 动量法(Momentum)介绍
1. 背景知识 在深度学习的优化过程中,梯度下降法(Gradient Descent, GD)是最基本的方法。然而,基本的梯度下降法在实际应用中存在收敛速度慢、容易陷入局部最小值以及在高维空间中振荡较大的问题。为了解决这些问题,人…...
Python | Leetcode Python题解之第228题汇总区间
题目: 题解: class Solution:def summaryRanges(self, nums: List[int]) -> List[str]:def f(i: int, j: int) -> str:return str(nums[i]) if i j else f{nums[i]}->{nums[j]}i 0n len(nums)ans []while i < n:j iwhile j 1 < n …...
物联网应用,了解一点 WWAN全球网络标准
WWAN/蜂窝无线电认证,对跨地区应用场景,特别重要。跟随全球业务的脚步,我们像大唐先辈一样走遍全球业务的时候,了解一点全球化的 知识信息,就显得有那么点意义。 NA (北美):美国和加…...
如何指定多块GPU卡进行训练-数据并行
训练代码: train.py import torch import torch.nn as nn import torch.optim as optim from torch.utils.data import DataLoader, Dataset import torch.nn.functional as F# 假设我们有一个简单的文本数据集 class TextDataset(Dataset):def __init__(self, te…...
RK3568笔记三十三: helloworld 驱动测试
若该文为原创文章,转载请注明原文出处。 报着学习态度,接下来学习驱动是如何使用的,从简单的helloworld驱动学习起。 开始编写第一个驱动程序—helloworld 驱动。 一、环境 1、开发板:正点原子的ATK-DLRK3568 2、系统…...
【智能制造-14】机器视觉软件
CCD相机和COMS相机? CCD(Charge-Coupled Device)相机和CMOS(Complementary Metal-Oxide-Semiconductor)相机是两种常见的数字图像传感器技术,用于捕捉和处理图像。 CCD相机: CCD相机使用一种称为CCD的光电…...
MVC分页
public ActionResult Index(int ? page){IPagedList<EF.ACCOUNT> userPagedList;using (EF.eMISENT content new EF.eMISENT()){第几页int pageNumber page ?? 1;每页数据条数,这个可以放在配置文件中int pageSize 10;//var infoslist.C660List.OrderBy(…...
webGL可用的14种3D文件格式,但要具体问题具体分析。
hello,我威斯数据,你在网上看到的各种炫酷的3d交互效果,背后都必须有三维文件支撑,就好比你网页的时候,得有设计稿源文件一样。WebGL是一种基于OpenGL ES 2.0标准的3D图形库,可以在网页上实现硬件加速的3D图…...
HybridCLR原理中的重点总结
序言 该文章以一个新手的身份,讲一下自己学习的经过,大家更快的学习HrbirdCLR。 我之前的两个Unity项目中,都使用到了热更新功能,而热更新的技术栈都是用的HybridCLR。 第一个项目本身虽然已经集成好了热更逻辑(使用…...
昇思学习打卡-14-ResNet50迁移学习
文章目录 数据集可视化预训练模型的使用部分实现 推理 迁移学习:在一个很大的数据集上训练得到一个预训练模型,然后使用该模型来初始化网络的权重参数或作为固定特征提取器应用于特定的任务中。本章学习使用的是前面学过的ResNet50,使用迁移学…...
软件开发面试题C#,.NET知识点(续)
1.C#中的封装是什么,以及它的重要性。 封装(Encapsulation) 是面向对象编程(OOP)的一个基本概念。它指的是将对象的状态(属性)和行为(方法)绑定在一起,并且将…...
Linux 文件类型,目录与路径,文件与目录管理
文件类型 后面的字符表示文件类型标志 普通文件:-(纯文本文件,二进制文件,数据格式文件) 如文本文件、图片、程序文件等。 目录文件:d(directory) 用来存放其他文件或子目录。 设备…...
React hook之useRef
React useRef 详解 useRef 是 React 提供的一个 Hook,用于在函数组件中创建可变的引用对象。它在 React 开发中有多种重要用途,下面我将全面详细地介绍它的特性和用法。 基本概念 1. 创建 ref const refContainer useRef(initialValue);initialValu…...
Python爬虫实战:研究feedparser库相关技术
1. 引言 1.1 研究背景与意义 在当今信息爆炸的时代,互联网上存在着海量的信息资源。RSS(Really Simple Syndication)作为一种标准化的信息聚合技术,被广泛用于网站内容的发布和订阅。通过 RSS,用户可以方便地获取网站更新的内容,而无需频繁访问各个网站。 然而,互联网…...
Python爬虫(二):爬虫完整流程
爬虫完整流程详解(7大核心步骤实战技巧) 一、爬虫完整工作流程 以下是爬虫开发的完整流程,我将结合具体技术点和实战经验展开说明: 1. 目标分析与前期准备 网站技术分析: 使用浏览器开发者工具(F12&…...
SpringTask-03.入门案例
一.入门案例 启动类: package com.sky;import lombok.extern.slf4j.Slf4j; import org.springframework.boot.SpringApplication; import org.springframework.boot.autoconfigure.SpringBootApplication; import org.springframework.cache.annotation.EnableCach…...
什么?连接服务器也能可视化显示界面?:基于X11 Forwarding + CentOS + MobaXterm实战指南
文章目录 什么是X11?环境准备实战步骤1️⃣ 服务器端配置(CentOS)2️⃣ 客户端配置(MobaXterm)3️⃣ 验证X11 Forwarding4️⃣ 运行自定义GUI程序(Python示例)5️⃣ 成功效果
一、网络架构 C/S (client/server 客户端/服务器):由客户端和服务器端两个部分组成。客户端通常是用户使用的应用程序,负责提供用户界面和交互逻辑 ,接收用户输入,向服务器发送请求,并展示服务…...
R语言速释制剂QBD解决方案之三
本文是《Quality by Design for ANDAs: An Example for Immediate-Release Dosage Forms》第一个处方的R语言解决方案。 第一个处方研究评估原料药粒径分布、MCC/Lactose比例、崩解剂用量对制剂CQAs的影响。 第二处方研究用于理解颗粒外加硬脂酸镁和滑石粉对片剂质量和可生产…...
push [特殊字符] present
push 🆚 present 前言present和dismiss特点代码演示 push和pop特点代码演示 前言 在 iOS 开发中,push 和 present 是两种不同的视图控制器切换方式,它们有着显著的区别。 present和dismiss 特点 在当前控制器上方新建视图层级需要手动调用…...
