当前位置: 首页 > news >正文

实验场:在几分钟内使用 Bedrock Anthropic Models 和 Elasticsearch 进行 RAG 实验

作者:来自 Elastic Joe McElroy, Aditya Tripathi

我们最近发布了 Elasticsearch Playground,这是一个新的低代码界面,开发人员可以通过 A/B 测试 LLM、调整提示(prompt)和分块数据来迭代和构建生产 RAG 应用程序。今天,我们宣布 Amazon Bedrock 支持 Playground,为你带来更多来自 Amazon、Anthropic 和其他领先提供商的基础模型选择。使用 Amazon Bedrock 和 Elasticsearch 的开发人员现在可以使用私有或专有数据(索引到一个或多个 Elasticsearch 索引中)优化检索以获得答案。

使用 Amazon Bedrock 进行推理,对 LLM 和检索进行 A/B 测试

Playground 界面允许你试验和 A/B 测试来自 Amazon 和 Anthropic 等领先模型提供商的不同 LLMs。但是,选择模型只是问题的一部分。开发人员还必须考虑如何检索相关搜索结果以紧密匹配模型的上下文窗口大小(即模型可以处理的 token 数)。检索比上下文窗口长的文本段落可能会导致截断,从而导致信息丢失。小于上下文窗口的文本可能无法正确嵌入,从而导致表示不准确。下一个复杂性可能来自必须结合来自不同数据源的检索。

Playground 将许多 Elasticsearch 功能整合到一个简单但功能强大的界面中,用于调整 RAG 工作流程:

  • 使用不断增长的模型源列表(包括 Amazon Bedrock),以选择最适合你需求的 LLM
  • 使用 semantic_text,调整分块策略以适应数据和上下文窗口大小
  • 使用 retrievers 添加多阶段检索管道(包括重新排序)

将发送到模型的上下文调整为所需的生产标准后,你可以导出代码并使用 Python Elasticsearch 语言客户端或 LangChain Python 集成完成你的应用程序。

今天的公告通过 Open Inference API 集成提供对 Amazon Bedrock 上托管模型的访问,以及使用新的 semantic_text 字段类型的能力。我们真心希望你能享受这种体验!

Playground 采用了所有这些可组合元素,并为你带来了真正的开发人员工具集,可快速迭代和开发,以满足开发人员所需的速度。

使用 Playground

在 Kibana(Elasticsearch UI)中,从左侧的导航页面导航到 “Playground”。首先,你需要连接到模型提供商以提供你选择的 LLM。Playground 通过 Amazon Bedrock 支持聊天完成模型(例如 Anthropic)。

此博客提供了连接和配置 Playground 体验的详细步骤和说明。

连接 LLM 并选择 Elasticsearch 索引后,你可以开始询问有关索引中的信息的问题。LLM 将根据你的数据上下文提供答案。

将所选的 LLM 与 Elasticsearch 索引与私有专有信息相连接
立即与你的数据进行聊天并评估模型(例如本例中的 Anthropic Claude 3 Haiku)的响应

审查并定制存储向量嵌入的索引的文本和检索器查询

使用检索器和混合搜索获取最佳上下文

Elastic 的混合搜索可帮助你构建最佳上下文窗口。有效的上下文窗口由各种类型的向量化和纯文本数据构建,这些数据可以分布在多个索引中。开发人员现在可以利用新的 query retrievers 来简化查询创建。从版本 8.14 开始,Elastic Cloud Serverless 上提供了三种新的检索器,并且只需一个统一查询即可实现使用 RRF 规范化的混合搜索。你可以存储矢量化数据并使用 kNN 检索器,或者添加元数据和上下文来创建混合搜索查询。很快,你还可以添加语义重新排名以进一步改善搜索结果。

使用 Playground 快速交付对话式搜索

构建对话式搜索体验可能涉及多种方法,而选择可能会让人不知所措,尤其是考虑到新的重新排名和检索技术的创新速度,这两种技术都适用于 RAG 应用程序。

借助我们的 Playground,即使开发人员可以使用多种功能,这些选择也会变得简单直观。我们的独特方法是立即将混合搜索作为构建的主要支柱,直观地了解所选和分块数据的形状,并扩大 LLMs 的多个外部提供商的访问范围。

今年早些时候,Elastic 获得了 AWS 生成式 AI 能力奖,这一殊荣授予了极少数提供差异化​​生成式 AI 工具的 AWS 合作伙伴。Elastic 为 Playground 体验添加 Bedrock 支持的方法遵循相同的原则 —— 为 Elastic Cloud on AWS 开发人员带来新的创新功能。

使用 Playground 构建、测试、享受乐趣

立即前往 Playground 文档开始使用!探索 GitHub 上的搜索实验室,了解 Cohere、Anthropic、Azure OpenAI 等提供商的新手册和集成。

准备好自己尝试了吗?开始免费试用。
想要获得 Elastic 认证?了解下一期 Elasticsearch 工程师培训何时开始!

原文:Playground: Experiment with RAG using Bedrock Anthropic Models and Elasticsearch in minutes — Elastic Search Labs

相关文章:

实验场:在几分钟内使用 Bedrock Anthropic Models 和 Elasticsearch 进行 RAG 实验

作者:来自 Elastic Joe McElroy, Aditya Tripathi 我们最近发布了 Elasticsearch Playground,这是一个新的低代码界面,开发人员可以通过 A/B 测试 LLM、调整提示(prompt)和分块数据来迭代和构建生产 RAG 应用程序。今天…...

代理详解之静态代理、动态代理、SpringAOP实现

1、代理介绍 代理是指一个对象A通过持有另一个对象B,可以具有B同样的行为的模式。为了对外开放协议,B往往实现了一个接口,A也会去实现接口。但是B是“真正”实现类,A则比较“虚”,他借用了B的方法去实现接口的方法。A…...

Laravel - laravel-websockets 开发详解

1.我laravel-websockets 的开发环境 Laravel 9.0Laravel WebSockets (最新版)Laravel Vite 2. 安装服务器端包 beyondcode/laravel-websockets 运行以下命令安装laravel-websockets composer require beyondcode/laravel-websockets 安装完后&#…...

vue3 学习笔记04 -- axios的使用及封装

vue3 学习笔记04 – axios的使用及封装 安装 Axios 和 TypeScript 类型定义 npm install axios npm install -D types/axios创建一个 Axios 实例并封装成一个可复用的模块,这样可以在整个应用中轻松地进行 API 请求管理。 在 src 目录下创建一个 services 文件夹&…...

键盘快捷键设置录入

效果图: 代码: import React, {useContext, useEffect, useRef} from react import {message} from "antd"; import lodash from "lodash"; import {StateContext} from ../../index.tsx import {useUpdateEffect} from "ahoo…...

刷题Day49|647. 回文子串、516.最长回文子序列

647. 回文子串 647. 回文子串 - 力扣(LeetCode) 思路:递推公式的含义是[i, j]内的子串是否为回文子串(bolean[][])。一共两种情况:s[i] s[j],i和j相差1以外就得判断中间包含的的字符串是否为回文了&…...

关于transformers库验证时不进入compute_metrics方法的一些坑

生成式任务输入就是标签 transformers在进入compute_metrics前会有一个判断,源码如下: # 版本 transformers4.41.2 # 在trainer.py 的 3842 行 # Metrics! if (self.compute_metrics is not Noneand all_preds is not Noneand all_labels is not Nonea…...

苹果提出RLAIF:轻量级语言模型编写代码

获取本文论文原文PDF,请在公众号【AI论文解读】留言:论文解读 代码生成一直是一个充满挑战的领域。随着大型语言模型(LLM)的出现,我们见证了在自然语言理解和生成方面的显著进步。然而,当涉及到代码生成&a…...

[leetcode] shortest-subarray-with-sum-at-least-k 和至少为 K 的最短子数组

. - 力扣&#xff08;LeetCode&#xff09; class Solution { public:int shortestSubarray(vector<int>& nums, int k) {int n nums.size();vector<long> preSumArr(n 1);for (int i 0; i < n; i) {preSumArr[i 1] preSumArr[i] nums[i];}int res n…...

专业140+总分420+天津大学815信号与系统考研经验天大电子信息与通信工程,真题,大纲,参考书。

顺利上岸天津大学&#xff0c;专业课815信号与系统140&#xff0c;总分420&#xff0c;总结一些自己的复习经历&#xff0c;希望对于报考天大的同学有些许帮助&#xff0c;少走弯路&#xff0c;顺利上岸。专业课&#xff1a; 815信号与系统&#xff1a;指定教材吴大正&#xf…...

前端如何取消接口调用

&#x1f9d1;‍&#x1f4bb; 写在开头 点赞 收藏 学会&#x1f923;&#x1f923;&#x1f923; 1. xmlHttpRequest是如何取消请求的&#xff1f; 实例化的XMLHttpRequest对象上也有abort方法 const xhr new XMLHttpRequest(); xhr.addEventListener(load, function(e)…...

k8s 容器环境下的镜像如何转换为docker 使用

在无法连接registry 的环境中&#xff0c;想要把 crictl 中的镜像给docker 使用&#xff0c;应该怎么处理&#xff1f; 其实容器镜像是通用的&#xff0c;crictl 和ctr 以及docker 镜像是可以互相使用的&#xff0c;因为docker 在1.10版本之后遵从了OCI。所以crictl 环境下的镜…...

FreeRTOS 队列

队列是一种任务到任务、任务到中断、中断到任务数据交流的一种机制。在队列中可以存 储数量有限、大小固定的多个数据&#xff0c;队列中的每一个数据叫做队列项目&#xff0c;队列能够存储队列项 目的最大数量称为队列的长度&#xff0c;在创建队列的时候&#xff0c;就需要指…...

如何识别图片文字转化为文本?5个软件帮助你快速提取图片文字

如何识别图片文字转化为文本&#xff1f;5个软件帮助你快速提取图片文字 将图片中的文字提取为文本是一项非常有用的技能&#xff0c;特别是当你需要处理大量扫描文档、截图或其他图片时。以下是五款能够帮助你快速提取图片文字的软件&#xff1a; 迅捷文字识别 这是一款非…...

Flink SQL kafka连接器

版本说明 Flink和kafka的版本号有一定的匹配关系&#xff0c;操作成功的版本&#xff1a; Flink1.17.1kafka_2.12-3.3.1 添加kafka连接器依赖 将flink-sql-connector-kafka-1.17.1.jar上传到flink的lib目录下 下载flink-sql-connector-kafka连接器jar包 https://mvnreposi…...

glm-4 联网搜索 api 测试

今天测试了一下 glm-4 的联网搜索 web_search tool 调用&#xff0c;发现了 web_search 的网页检索返回结果中几个比较诡异的事情&#xff0c;特此记录&#xff1a; 有些检索结果没有 icon、link、media 字段&#xff0c;但从内容上看确实是联网搜索出来的结果&#xff0c;不知…...

Java毕业设计 基于SSM vue图书管理系统小程序 微信小程序

Java毕业设计 基于SSM vue图书管理系统小程序 微信小程序 SSM 图书管理系统小程序 功能介绍 用户 登录 注册 首页 图片轮播 图书信息推荐 图书详情 赞 踩 评论 收藏 系统公告 公告详情 用户信息修改 我的待还 图书归还 催还提醒 我的收藏管理 意见反馈 管理员 登录 个人中心…...

bert训练的一些技巧(rand() < self.skipgram_prb)

rand() < self.skip_gram_prb) 是一个条件表达式&#xff0c;用来判断是否进行skip-gram掩码操作。这种掩码操作通常用于自然语言处理中的数据增强&#xff0c;通过概率决定是否应用skip-gram掩码。下面是对这个表达式的详细解释&#xff1a; 解释 rand(): rand() 是一个随…...

pandas修改时间索引报错处理

import pandas as pd import numpy as np import osdfpd.DataFrame(index[a,b,c],data{序列:[1,2,3]}) df.rename(index{a:a1},inplaceTrue) print(df) print(df.index.dtype)df1pd.DataFrame(index[2024-01-01,2024-01-02,2024-01-03],data{序列:[1,2,3]}) df1.rename(index{2…...

Nginx Bla~Bla~

root 和 alias指令都用于指定服务器上的文件系统路径&#xff0c;但它们在用法和行为上有一些不同 root指令通常用于在Nginx配置中定义一个目录&#xff0c;该目录将作为请求的根目录。 server { location /static/ {root /var/www; 请求 /static/index.html 将映射到 /v…...

华为云AI开发平台ModelArts

华为云ModelArts&#xff1a;重塑AI开发流程的“智能引擎”与“创新加速器”&#xff01; 在人工智能浪潮席卷全球的2025年&#xff0c;企业拥抱AI的意愿空前高涨&#xff0c;但技术门槛高、流程复杂、资源投入巨大的现实&#xff0c;却让许多创新构想止步于实验室。数据科学家…...

synchronized 学习

学习源&#xff1a; https://www.bilibili.com/video/BV1aJ411V763?spm_id_from333.788.videopod.episodes&vd_source32e1c41a9370911ab06d12fbc36c4ebc 1.应用场景 不超卖&#xff0c;也要考虑性能问题&#xff08;场景&#xff09; 2.常见面试问题&#xff1a; sync出…...

多场景 OkHttpClient 管理器 - Android 网络通信解决方案

下面是一个完整的 Android 实现&#xff0c;展示如何创建和管理多个 OkHttpClient 实例&#xff0c;分别用于长连接、普通 HTTP 请求和文件下载场景。 <?xml version"1.0" encoding"utf-8"?> <LinearLayout xmlns:android"http://schemas…...

Day131 | 灵神 | 回溯算法 | 子集型 子集

Day131 | 灵神 | 回溯算法 | 子集型 子集 78.子集 78. 子集 - 力扣&#xff08;LeetCode&#xff09; 思路&#xff1a; 笔者写过很多次这道题了&#xff0c;不想写题解了&#xff0c;大家看灵神讲解吧 回溯算法套路①子集型回溯【基础算法精讲 14】_哔哩哔哩_bilibili 完…...

【CSS position 属性】static、relative、fixed、absolute 、sticky详细介绍,多层嵌套定位示例

文章目录 ★ position 的五种类型及基本用法 ★ 一、position 属性概述 二、position 的五种类型详解(初学者版) 1. static(默认值) 2. relative(相对定位) 3. absolute(绝对定位) 4. fixed(固定定位) 5. sticky(粘性定位) 三、定位元素的层级关系(z-i…...

【配置 YOLOX 用于按目录分类的图片数据集】

现在的图标点选越来越多&#xff0c;如何一步解决&#xff0c;采用 YOLOX 目标检测模式则可以轻松解决 要在 YOLOX 中使用按目录分类的图片数据集&#xff08;每个目录代表一个类别&#xff0c;目录下是该类别的所有图片&#xff09;&#xff0c;你需要进行以下配置步骤&#x…...

云原生安全实战:API网关Kong的鉴权与限流详解

&#x1f525;「炎码工坊」技术弹药已装填&#xff01; 点击关注 → 解锁工业级干货【工具实测|项目避坑|源码燃烧指南】 一、基础概念 1. API网关&#xff08;API Gateway&#xff09; API网关是微服务架构中的核心组件&#xff0c;负责统一管理所有API的流量入口。它像一座…...

人工智能--安全大模型训练计划:基于Fine-tuning + LLM Agent

安全大模型训练计划&#xff1a;基于Fine-tuning LLM Agent 1. 构建高质量安全数据集 目标&#xff1a;为安全大模型创建高质量、去偏、符合伦理的训练数据集&#xff0c;涵盖安全相关任务&#xff08;如有害内容检测、隐私保护、道德推理等&#xff09;。 1.1 数据收集 描…...

Python 训练营打卡 Day 47

注意力热力图可视化 在day 46代码的基础上&#xff0c;对比不同卷积层热力图可视化的结果 import torch import torch.nn as nn import torch.optim as optim from torchvision import datasets, transforms from torch.utils.data import DataLoader import matplotlib.pypl…...

认识CMake并使用CMake构建自己的第一个项目

1.CMake的作用和优势 跨平台支持&#xff1a;CMake支持多种操作系统和编译器&#xff0c;使用同一份构建配置可以在不同的环境中使用 简化配置&#xff1a;通过CMakeLists.txt文件&#xff0c;用户可以定义项目结构、依赖项、编译选项等&#xff0c;无需手动编写复杂的构建脚本…...