pandas修改时间索引报错处理
import pandas as pd
import numpy as np
import osdf=pd.DataFrame(index=['a','b','c'],data={'序列':[1,2,3]})
df.rename(index={'a':'a1'},inplace=True)
print(df)
print(df.index.dtype)df1=pd.DataFrame(index=['2024-01-01','2024-01-02','2024-01-03'],data={'序列':[1,2,3]})
df1.rename(index={'2024-01-01':'a1'},inplace=True)
print(df1)
print(df1.index.dtype)df2=pd.DataFrame(index=pd.date_range('2024-01-01',periods=3,freq='D'),data={'序列':[1,2,3]})
# df2.rename(index={'2024-01-01':'2024-01-05'},inplace=True)
# 修改后的索引如果不是同类型,将会引起错误
print(df2.index.dtype)
df2.index=df2.index.astype('str')
df2.rename(index={'2024-01-01':'2024-01-05'},inplace=True)
print(df2)
运行结果:

案例:时间索引列在修改时,需要同类型之间修改,可以先把时间类型修改为字符类型,再修改,否则将会报错,报错提示如下:
File "lib.pyx", line 747, in pandas._libs.lib.ensure_string_array
File "lib.pyx", line 804, in pandas._libs.lib.ensure_string_array
IndexError: too many indices for array

相关文章:
pandas修改时间索引报错处理
import pandas as pd import numpy as np import osdfpd.DataFrame(index[a,b,c],data{序列:[1,2,3]}) df.rename(index{a:a1},inplaceTrue) print(df) print(df.index.dtype)df1pd.DataFrame(index[2024-01-01,2024-01-02,2024-01-03],data{序列:[1,2,3]}) df1.rename(index{2…...
Nginx Bla~Bla~
root 和 alias指令都用于指定服务器上的文件系统路径,但它们在用法和行为上有一些不同 root指令通常用于在Nginx配置中定义一个目录,该目录将作为请求的根目录。 server { location /static/ {root /var/www; 请求 /static/index.html 将映射到 /v…...
java awt和swing介绍
Java AWT(Abstract Window Toolkit)和 Swing 是用于创建图形用户界面(GUI)的 Java API。 AWT AWT 是 Java 最初的平台依赖的窗口图形界面工具包,它提供了一组基本的 GUI 组件、窗口管理、事件处理等。AWT 组件是重量…...
奇怪的错误记录
https://github.com/meta-llama/llama3/issues/80 读模型没问题,推理时出现: RuntimeError: “triu_tril_cuda_template” not implemented for ‘BFloat16’ ———————————————— 事发原因 我尝试了解transformers的AutoProcessor时&a…...
来啦,经典传说大变身牛郎织女后代逗趣日常
《落凡尘:星宿大冒险》来啦! 经典传说大变身,牛郎织女后代金风, 上演一出“星际小侦探”的逗趣日常! 想象一下,二十八星宿那些傲娇的星星们, 居然能“离家出走”,还差点把天给掀了…...
【uniapp-ios】App端与webview端相互通信的方法以及注意事项
前言 在开发中,使用uniapp开发的项目开发效率是极高的,使用一套代码就能够同时在多端上线,像笔者之前写过的使用Flutter端和webview端之间的相互通信方法和问题,这种方式本质上实际上是h5和h5之间的通信,网上有非常多…...
Qt常用基础控件总结—表格控件(QTableWidget类)
表格控件QTableWidget 表格控件最上面一排是只读的水平表头,最左边一列是只读的垂直表头。表头又可以细分为多个分段(section),水平表头的分段就是表格各个列的列首,垂直表头 分段就是表格各个行的行首。表格控件的实体区域是按行、列排布的单元格,单元格内容一般用 QTa…...
笔记:Entity Framework Core 数据库迁移add-migration
一、目的: 数据库迁移是一种管理数据库架构变化的技术,它允许开发者在应用程序的生命周期中安全地更新数据库架构,而不会丢失数据或破坏现有的数据库结构。在Entity Framework Core(EF Core)中,数据库迁移特…...
准备工作+1、请求和响应+2、模型和管理站点
Django快速入门——创建一个基本的投票应用程序 准备工作1、创建虚拟环境2、安装django 1、请求和响应(1)创建项目(2)用于开发的简易服务器(3)创建投票应用(4)编写第一个视图1、编写…...
js 格式化时间
方法一:使用toLocaleString或toLocaleDateString/toLocaleTimeString Date对象提供了toLocaleString()、toLocaleDateString()和toLocaleTimeString()方法,这些方法允许你根据本地时间格式来显示日期和时间。虽然它们不直接提供高度自定义的格式选项&am…...
python 缩放照片
pip install Pillow from PIL import Image 打开一个图片文件 img Image.open(r"C:\Users\Administrator\Desktop\我的证件\证件照.jpg") 设定新的尺寸 new_size (480, 640) 缩放图片 resized_img img.resize(new_size) 显示缩放后的图片 resized_img.sh…...
【C语言】指针(1):入门理解(课堂随笔)
目录 一、内存和地址 二、指针变量和地址 三、指针变量类型的意义 一、内存和地址 只要讲指针就离不开内存 因为指针就是访问内存的 计算上CPU(中央处理器)在处理数据的时候,需要的数据是在内存中读取的,处理后的数 据也会放…...
LLMs可以进行任务规划吗?如果不行,LLMs+GNN可以吗?
深度图学习与大模型LLM(小编): 大家好,今天向大家介绍一篇最新发布的研究论文(20240530)。这篇论文探讨了如何通过引入GNN来提高大模型在任务规划(task planning)中的性能。*论文分析了LLMs在任务规划上的局限性,并提出了一种简单而有效的解决方案。* 1.…...
性价比高充电宝有哪些?充电宝十大最佳品牌大盘点!
在如今这个高度数字化的时代,我们的生活离不开各种电子设备,而充电宝作为保障电子设备续航的重要工具,其地位日益凸显。然而,面对市场上琳琅满目的充电宝品牌和产品,要挑选到一款性价比高的充电宝并非易事。在这篇盘点…...
hnust 1963: 邻接矩阵表示法
hnust 1963: 邻接矩阵表示法 题目描述 输入一个图,用邻接矩阵存储,并实现一些操作。 拷贝下面的代码,按要求完成其中的FirstAdjVex,NextAdjVex和CreateUDG操作,其他地方不得改动。 //邻接矩阵表示图 #include <io…...
Hadoop-15-Hive 元数据管理与存储 Metadata 内嵌模式 本地模式 远程模式 集群规划配置 启动服务 3节点云服务器实测
章节内容 上一节我们完成了: Hive中数据导出:HDFSHQL操作上传内容至Hive、增删改查等操作 背景介绍 这里是三台公网云服务器,每台 2C4G,搭建一个Hadoop的学习环境,供我学习。 之前已经在 VM 虚拟机上搭建过一次&am…...
215.Mit6.S081-实验三-page tables
在本实验室中,您将探索页表并对其进行修改,以简化将数据从用户空间复制到内核空间的函数。 一、实验准备 开始编码之前,请阅读xv6手册的第3章和相关文件: kernel/memlayout.h,它捕获了内存的布局。kernel/vm.c&…...
flask使用定时任务flask_apscheduler(APScheduler)
Flask-APScheduler描述: Flask-APScheduler 是一个 Flask 扩展,增加了对 APScheduler 的支持。 APScheduler 有三个内置的调度系统可供您使用: Cron 式调度(可选开始/结束时间) 基于间隔的执行(以偶数间隔运行作业…...
ApiFox或postman怎么用params类型传输json或集合+json的String类型
你是否碰见过这样的接口? post请求然后传输的参数都要和查询时一样以param形式传参数,那String什么的都好说,传就直接进后台了,那json呢,集合呢,是不是直接给你返400呢. 1.传json如何处理 那我们看看怎么实现,如果你要传json数据,那需要将特殊字符转义,也叫url转码,否则传不…...
数据结构第16节 最大堆
最大堆是一种特殊的完全二叉树数据结构,其中每个父节点的键值都大于或等于其子节点的键值。在Java中,最大堆通常用于实现优先队列,堆排序算法,或者在需要快速访问最大元素的应用场景中。 让我们通过一个具体的案例来说明最大堆的…...
日语AI面试高效通关秘籍:专业解读与青柚面试智能助攻
在如今就业市场竞争日益激烈的背景下,越来越多的求职者将目光投向了日本及中日双语岗位。但是,一场日语面试往往让许多人感到步履维艰。你是否也曾因为面试官抛出的“刁钻问题”而心生畏惧?面对生疏的日语交流环境,即便提前恶补了…...
2025年能源电力系统与流体力学国际会议 (EPSFD 2025)
2025年能源电力系统与流体力学国际会议(EPSFD 2025)将于本年度在美丽的杭州盛大召开。作为全球能源、电力系统以及流体力学领域的顶级盛会,EPSFD 2025旨在为来自世界各地的科学家、工程师和研究人员提供一个展示最新研究成果、分享实践经验及…...
centos 7 部署awstats 网站访问检测
一、基础环境准备(两种安装方式都要做) bash # 安装必要依赖 yum install -y httpd perl mod_perl perl-Time-HiRes perl-DateTime systemctl enable httpd # 设置 Apache 开机自启 systemctl start httpd # 启动 Apache二、安装 AWStats࿰…...
Mobile ALOHA全身模仿学习
一、题目 Mobile ALOHA:通过低成本全身远程操作学习双手移动操作 传统模仿学习(Imitation Learning)缺点:聚焦与桌面操作,缺乏通用任务所需的移动性和灵活性 本论文优点:(1)在ALOHA…...
安宝特方案丨船舶智造的“AR+AI+作业标准化管理解决方案”(装配)
船舶制造装配管理现状:装配工作依赖人工经验,装配工人凭借长期实践积累的操作技巧完成零部件组装。企业通常制定了装配作业指导书,但在实际执行中,工人对指导书的理解和遵循程度参差不齐。 船舶装配过程中的挑战与需求 挑战 (1…...
论文阅读:Matting by Generation
今天介绍一篇关于 matting 抠图的文章,抠图也算是计算机视觉里面非常经典的一个任务了。从早期的经典算法到如今的深度学习算法,已经有很多的工作和这个任务相关。这两年 diffusion 模型很火,大家又开始用 diffusion 模型做各种 CV 任务了&am…...
多元隐函数 偏导公式
我们来推导隐函数 z z ( x , y ) z z(x, y) zz(x,y) 的偏导公式,给定一个隐函数关系: F ( x , y , z ( x , y ) ) 0 F(x, y, z(x, y)) 0 F(x,y,z(x,y))0 🧠 目标: 求 ∂ z ∂ x \frac{\partial z}{\partial x} ∂x∂z、 …...
Xcode 16 集成 cocoapods 报错
基于 Xcode 16 新建工程项目,集成 cocoapods 执行 pod init 报错 ### Error RuntimeError - PBXGroup attempted to initialize an object with unknown ISA PBXFileSystemSynchronizedRootGroup from attributes: {"isa">"PBXFileSystemSynchro…...
数据结构:泰勒展开式:霍纳法则(Horner‘s Rule)
目录 🔍 若用递归计算每一项,会发生什么? Horners Rule(霍纳法则) 第一步:我们从最原始的泰勒公式出发 第二步:从形式上重新观察展开式 🌟 第三步:引出霍纳法则&…...
2.2.2 ASPICE的需求分析
ASPICE的需求分析是汽车软件开发过程中至关重要的一环,它涉及到对需求进行详细分析、验证和确认,以确保软件产品能够满足客户和用户的需求。在ASPICE中,需求分析的关键步骤包括: 需求细化:将从需求收集阶段获得的高层需…...
