当前位置: 首页 > news >正文

【C语言】指针(1):入门理解(课堂随笔)

目录

一、内存和地址

二、指针变量和地址

三、指针变量类型的意义


一、内存和地址

只要讲指针就离不开内存

因为指针就是访问内存的

计算上CPU(中央处理器)在处理数据的时候,需要的数据是在内存中读取的,处理后的数
据也会放回内存中,那我们买电脑的时候,电脑上内存是8GB/16GB/32GB等,那这些内存空间如何高效的管理呢?
其实也是把内存划分为⼀个个的内存单元,每个内存单元的大小取1个字节
计算机常见单位
bit - ⽐特位
byte - 字节
KB
MB
GB
TB
PB1byte = 8bit
1KB = 1024byte
1MB = 1024KB
1GB = 1024MB
1TB = 1024GB
1PB = 1024TB

内存单元编号==地址==指针

二、指针变量和地址

CPU访问内存中的某个字节空间,必须知道这个字节空间在内存的什么位置,⽽因为内存中字节很多,所以需要给内存进⾏编址(就如同宿舍很多,需要给宿舍编号⼀样)。计算机中的编址,并不是把每个字节的地址记录下来,⽽是通过硬件设计完成的。
⾸先,必须理解,计算机内是有很多的硬件单元,⽽硬件单元是要互相协同⼯作的。所谓的协同,⾄少相互之间要能够进⾏数据传递。但是硬件与硬件之间是互相独⽴的,那么如何通信呢?答案很简单,⽤"线"连起来。⽽CPU和内存之间也是有⼤量的数据交互的,所以,两者必须也⽤线连起来。不过,我们今天关⼼⼀组线,叫做地址总线。
32位机器有32根地址总线, 每根线只有两态,表⽰0,1【电脉冲有⽆】,那么 ⼀根线,就能表⽰2种含义,2根线就能表⽰4种含义,依次类推。32根地址线,就能表⽰2^32种含义,每⼀种含义都代表⼀个地址。地址信息被下达给内存,在内存上,就可以找到该地址对应的数据,将数据在通过数据总线传⼊CPU内寄存器。
int main()
{
int a = 10;//创建变量的本质是向内存申请一块空间,为a申请4个字节的空间return 0;
}

指针变量和解应用操作符

int main()
{int a = 10;//&a --- &取地址操作符//& 单目操作符printf("%p\n",&a);return 0;
}
//指针--地址
//指针变量--存放地址的变量int main()
{int a = 10;//&a --- &取地址操作符//& 单目操作符//printf("%p\n",&a);int* p = &a;//p是一个变量(指针变量),是一块空间//编号-地址-指针//int说明p指向对象是int类型的//*在说明p是指针变量
return 0;
}
int main()
{char ch = 'w';char* pc = &ch;return 0;
}
int main()
{int a =10;int * p= &a;*p =0;//* -解引用操作符(间接访问操作符)//a =0;】//*&a = 0;//a = 0
printf("%d",a);//0?return 0;
}

指针变量的大小

32位机器假设有32根地址总线,每根地址线出来的电信号转换成数字信号后是1或者0,那我们把32根地址线产⽣的2进制序列当做⼀个地址,那么⼀个地址就是32个bit位,需要4 个字节才能存储。
如果指针变量是⽤来存放地址的,那么指针变的⼤⼩就得是4个字节的空间才可以。同理64位器,假设有64根地址线,⼀个地址就是64个⼆进制位组成的⼆进制序列,存储起来就需要8个字节的空间,指针变的⼤⼩就是8个字节。
指针变量 - 存放地址的
                  地址产生:地址线上传输的
                   32根地址线 ——>地址是:32个0/1组成的二进制序列
                   要储存这样的地址:32bit位的空间 ==4个字节
int main(){printf("%zd\n", sizeof(char *));printf("%zd\n", sizeof(short *));printf("%zd\n", sizeof(int *));printf("%zd\n", sizeof(double *));return 0;}

结论:
32位平台下地址是32个bit位,指针变量⼤⼩是4个字节
64位平台下地址是64个bit位,指针变量⼤⼩是8个字节
注意指针变量的⼤⼩和类型是⽆关的,只要指针类型的变量,在相同的平台下,⼤⼩都是相同的。

三、指针变量类型的意义

指针类型决定了指针进行解应用操作符的时候访问几个字节,也就是决定指针的权限

int main()
{ int a = 0x11223344;int * pa = &a;*pa =0;return 0;
}

//代码1
#include <stdio.h>
int main()
{int n = 0x11223344;int *pi = &n; *pi = 0; return 0;
//代码2
#include <stdio.h>
int main()
{int n = 0x11223344;char *pc = (char *)&n;*pc = 0;return 0;
}
调试我们可以看到,代码1会将n的4个字节全部改为0,但是代码2只是将n的第⼀个字节改为0。
结论:指针的类型决定了,对指针解引⽤的时候有多⼤的权限(⼀次能操作⼏个字节)。
⽐如: char* 的指针解引⽤就只能访问⼀个字节,⽽ int* 的指针的解引⽤就能访问四个字节。

指针+-整数

int main()
{int a =10;int *pa = &a;char* pc = &a;printf("pa=%p\n",pa);printf("pa+1 = %p\n",pa+1);printf("pc = %p\n",pc);printf("pc+1 = %p\n",pc+1);return 0;
}

指针类型决定了指针进行+1,-1的时候,一次走远的距离

int * +1 --->走4个字节(整型大小)

char* +1--->走了1个字节(字符大小)

完整版:【C语言】指针(1)入门理解完整版

相关文章:

【C语言】指针(1):入门理解(课堂随笔)

目录 一、内存和地址 二、指针变量和地址 三、指针变量类型的意义 一、内存和地址 只要讲指针就离不开内存 因为指针就是访问内存的 计算上CPU&#xff08;中央处理器&#xff09;在处理数据的时候&#xff0c;需要的数据是在内存中读取的&#xff0c;处理后的数 据也会放…...

LLMs可以进行任务规划吗?如果不行,LLMs+GNN可以吗?

深度图学习与大模型LLM(小编): 大家好,今天向大家介绍一篇最新发布的研究论文&#xff08;20240530&#xff09;。这篇论文探讨了如何通过引入GNN来提高大模型在任务规划(task planning)中的性能。*论文分析了LLMs在任务规划上的局限性,并提出了一种简单而有效的解决方案。* 1.…...

性价比高充电宝有哪些?充电宝十大最佳品牌大盘点!

在如今这个高度数字化的时代&#xff0c;我们的生活离不开各种电子设备&#xff0c;而充电宝作为保障电子设备续航的重要工具&#xff0c;其地位日益凸显。然而&#xff0c;面对市场上琳琅满目的充电宝品牌和产品&#xff0c;要挑选到一款性价比高的充电宝并非易事。在这篇盘点…...

hnust 1963: 邻接矩阵表示法

hnust 1963: 邻接矩阵表示法 题目描述 输入一个图&#xff0c;用邻接矩阵存储&#xff0c;并实现一些操作。 拷贝下面的代码&#xff0c;按要求完成其中的FirstAdjVex&#xff0c;NextAdjVex和CreateUDG操作&#xff0c;其他地方不得改动。 //邻接矩阵表示图 #include <io…...

Hadoop-15-Hive 元数据管理与存储 Metadata 内嵌模式 本地模式 远程模式 集群规划配置 启动服务 3节点云服务器实测

章节内容 上一节我们完成了&#xff1a; Hive中数据导出&#xff1a;HDFSHQL操作上传内容至Hive、增删改查等操作 背景介绍 这里是三台公网云服务器&#xff0c;每台 2C4G&#xff0c;搭建一个Hadoop的学习环境&#xff0c;供我学习。 之前已经在 VM 虚拟机上搭建过一次&am…...

215.Mit6.S081-实验三-page tables

在本实验室中&#xff0c;您将探索页表并对其进行修改&#xff0c;以简化将数据从用户空间复制到内核空间的函数。 一、实验准备 开始编码之前&#xff0c;请阅读xv6手册的第3章和相关文件&#xff1a; kernel/memlayout.h&#xff0c;它捕获了内存的布局。kernel/vm.c&…...

flask使用定时任务flask_apscheduler(APScheduler)

Flask-APScheduler描述: Flask-APScheduler 是一个 Flask 扩展&#xff0c;增加了对 APScheduler 的支持。 APScheduler 有三个内置的调度系统可供您使用&#xff1a; Cron 式调度&#xff08;可选开始/结束时间&#xff09; 基于间隔的执行&#xff08;以偶数间隔运行作业…...

ApiFox或postman怎么用params类型传输json或集合+json的String类型

你是否碰见过这样的接口? post请求然后传输的参数都要和查询时一样以param形式传参数,那String什么的都好说,传就直接进后台了,那json呢,集合呢,是不是直接给你返400呢. 1.传json如何处理 那我们看看怎么实现,如果你要传json数据,那需要将特殊字符转义,也叫url转码,否则传不…...

数据结构第16节 最大堆

最大堆是一种特殊的完全二叉树数据结构&#xff0c;其中每个父节点的键值都大于或等于其子节点的键值。在Java中&#xff0c;最大堆通常用于实现优先队列&#xff0c;堆排序算法&#xff0c;或者在需要快速访问最大元素的应用场景中。 让我们通过一个具体的案例来说明最大堆的…...

显卡、显卡驱动、cuda、cuDNN之间关系

显卡、显卡驱动、CUDA 和 cuDNN 是构成高性能计算和深度学习环境的关键组件&#xff0c;它们之间有着紧密的联系。下面是对这些组件及其关系的详细介绍&#xff1a; 显卡&#xff08;GPU&#xff09; 显卡&#xff0c;全称为图形处理器&#xff08;Graphics Processing Unit&…...

Rewrk一个更现代的http框架基准测试实用程序

Rewrk一个更现代的http框架基准测试实用程序。HTTP基准测试&#xff08;HTTP benchmarking&#xff09;是一种测量和评估HTTP服务器或应用程序性能指标的活动。其目的是在特定条件下模拟大量用户请求&#xff0c;以测量服务器或应用程序的响应能力、吞吐量、延迟等指标&#xf…...

【算法】排序算法介绍 附带C#和Python实现代码

1. 冒泡排序(Bubble Sort) 2. 选择排序(Selection Sort) 3. 插入排序(Insertion Sort) 4. 归并排序(Merge Sort) 5. 快速排序(Quick Sort) 排序算法是计算机科学中的一个基础而重要的部分,用于将一组数据按照一定的顺序排列。下面介绍几种常见的排序算法,…...

360安全浏览器就是不行-python秒破解

下面画框都很容易破解&#xff0c;大家试试...

Python实现傅里叶级数可视化工具

Python实现傅里叶级数可视化工具 flyfish 有matlab实现&#xff0c;我没matlab&#xff0c;我有Python&#xff0c;所以我用Python实现。 整个工具的实现代码放在最后,界面使用PyQt5开发 起源 傅里叶级数&#xff08;Fourier Series&#xff09;由法国数学家和物理学家让-巴…...

PDF 分割拆分 API 数据接口

PDF 分割拆分 API 数据接口 文件处理&#xff0c;PDF 高效的 PDF 分割工具&#xff0c;高效处理&#xff0c;可永久存储。 1. 产品功能 高效处理大文件&#xff1b;支持多语言字符识别&#xff1b;支持 formdata 格式 PDF 文件流传参&#xff1b;支持设置每个 PDF 文件的页数…...

【python】随机森林预测汽车销售

目录 引言 1. 数据收集与预处理 2. 划分数据集 3. 构建随机森林模型 4. 模型训练 5. 模型评估 6. 模型调优 数据集 代码及结果 独热编码 随机森林模型训练 特征重要性图 混淆矩阵 ROC曲线 引言 随机森林&#xff08;Random Forest&#xff09;是一种集成学习方法…...

Stable Diffusion教程|练丹师是如何炼丹的Lora模型训练

前言 还记得我们之前就讲过学习SD成为炼丹师不&#xff1f;那么今天就来手把手教大家炼丹&#xff0c;看看同一个角色或某种风格的小模型是如何制作出来的。 目录 1 炼丹介绍 2 环境准备 3 Lora模型训练 **一、**炼丹介绍 什么是炼丹&#xff1f; 早在学习SD地第一篇就…...

QT--SQLite

配置类相关的表&#xff0c;所以我使用sqlite,且QT自带该组件&#xff1b; 1.安装 sqlite-tools-win-x64-3460000、SQLiteExpert5.4.31.575 使用SQLiteExpert建好数据库.db文件&#xff0c;和对应的表后把db文件放在指定目录 ./db/program.db&#xff1b; 2.选择sql组件 3.新…...

【深度学习入门篇 ②】Pytorch完成线性回归!

&#x1f34a;嗨&#xff0c;大家好&#xff0c;我是小森( &#xfe61;ˆoˆ&#xfe61; )&#xff01; 易编橙终身成长社群创始团队嘉宾&#xff0c;橙似锦计划领衔成员、阿里云专家博主、腾讯云内容共创官、CSDN人工智能领域优质创作者 。 易编橙&#xff1a;一个帮助编程小…...

Syslog 管理工具

Syslog常被称为系统日志或系统记录&#xff0c;是一种用来在互联网协议&#xff08;TCP/IP&#xff09;的网上中传递记录档消息的标准&#xff0c;常用来指涉实际的Syslog 协议&#xff0c;或者那些提交syslog消息的应用程序或数据库。 系统日志协议&#xff08;Syslog&#x…...

java_网络服务相关_gateway_nacos_feign区别联系

1. spring-cloud-starter-gateway 作用&#xff1a;作为微服务架构的网关&#xff0c;统一入口&#xff0c;处理所有外部请求。 核心能力&#xff1a; 路由转发&#xff08;基于路径、服务名等&#xff09;过滤器&#xff08;鉴权、限流、日志、Header 处理&#xff09;支持负…...

树莓派超全系列教程文档--(61)树莓派摄像头高级使用方法

树莓派摄像头高级使用方法 配置通过调谐文件来调整相机行为 使用多个摄像头安装 libcam 和 rpicam-apps依赖关系开发包 文章来源&#xff1a; http://raspberry.dns8844.cn/documentation 原文网址 配置 大多数用例自动工作&#xff0c;无需更改相机配置。但是&#xff0c;一…...

智慧工地云平台源码,基于微服务架构+Java+Spring Cloud +UniApp +MySql

智慧工地管理云平台系统&#xff0c;智慧工地全套源码&#xff0c;java版智慧工地源码&#xff0c;支持PC端、大屏端、移动端。 智慧工地聚焦建筑行业的市场需求&#xff0c;提供“平台网络终端”的整体解决方案&#xff0c;提供劳务管理、视频管理、智能监测、绿色施工、安全管…...

React19源码系列之 事件插件系统

事件类别 事件类型 定义 文档 Event Event 接口表示在 EventTarget 上出现的事件。 Event - Web API | MDN UIEvent UIEvent 接口表示简单的用户界面事件。 UIEvent - Web API | MDN KeyboardEvent KeyboardEvent 对象描述了用户与键盘的交互。 KeyboardEvent - Web…...

MODBUS TCP转CANopen 技术赋能高效协同作业

在现代工业自动化领域&#xff0c;MODBUS TCP和CANopen两种通讯协议因其稳定性和高效性被广泛应用于各种设备和系统中。而随着科技的不断进步&#xff0c;这两种通讯协议也正在被逐步融合&#xff0c;形成了一种新型的通讯方式——开疆智能MODBUS TCP转CANopen网关KJ-TCPC-CANP…...

unix/linux,sudo,其发展历程详细时间线、由来、历史背景

sudo 的诞生和演化,本身就是一部 Unix/Linux 系统管理哲学变迁的微缩史。来,让我们拨开时间的迷雾,一同探寻 sudo 那波澜壮阔(也颇为实用主义)的发展历程。 历史背景:su的时代与困境 ( 20 世纪 70 年代 - 80 年代初) 在 sudo 出现之前,Unix 系统管理员和需要特权操作的…...

HTML前端开发:JavaScript 常用事件详解

作为前端开发的核心&#xff0c;JavaScript 事件是用户与网页交互的基础。以下是常见事件的详细说明和用法示例&#xff1a; 1. onclick - 点击事件 当元素被单击时触发&#xff08;左键点击&#xff09; button.onclick function() {alert("按钮被点击了&#xff01;&…...

推荐 github 项目:GeminiImageApp(图片生成方向,可以做一定的素材)

推荐 github 项目:GeminiImageApp(图片生成方向&#xff0c;可以做一定的素材) 这个项目能干嘛? 使用 gemini 2.0 的 api 和 google 其他的 api 来做衍生处理 简化和优化了文生图和图生图的行为(我的最主要) 并且有一些目标检测和切割(我用不到) 视频和 imagefx 因为没 a…...

代码规范和架构【立芯理论一】(2025.06.08)

1、代码规范的目标 代码简洁精炼、美观&#xff0c;可持续性好高效率高复用&#xff0c;可移植性好高内聚&#xff0c;低耦合没有冗余规范性&#xff0c;代码有规可循&#xff0c;可以看出自己当时的思考过程特殊排版&#xff0c;特殊语法&#xff0c;特殊指令&#xff0c;必须…...

第7篇:中间件全链路监控与 SQL 性能分析实践

7.1 章节导读 在构建数据库中间件的过程中&#xff0c;可观测性 和 性能分析 是保障系统稳定性与可维护性的核心能力。 特别是在复杂分布式场景中&#xff0c;必须做到&#xff1a; &#x1f50d; 追踪每一条 SQL 的生命周期&#xff08;从入口到数据库执行&#xff09;&#…...