Stable Diffusion教程|练丹师是如何炼丹的Lora模型训练
前言
还记得我们之前就讲过学习SD成为炼丹师不?那么今天就来手把手教大家炼丹,看看同一个角色或某种风格的小模型是如何制作出来的。
目录
1 炼丹介绍
2 环境准备
3 Lora模型训练
**一、**炼丹介绍
什么是炼丹?
早在学习SD地第一篇就普及过炼丹师的概念,炼丹师就是指那些专门研究、开发与应用Stable Diffusion模型的专业人士或爱好者,他们在实践中不断优化模型,使其产生更高质量、更具创意的图像。
炼丹种类
在用SD进行AI绘画时,常用的模型我们都可以自行训练:
1大模型,也就是底模和主模型,文件后缀.safetensors ,文件大小2G~7G左右,耗费时间最长,图片最多,算力最多,也是最有效的一种,没有底模根本无法生成图片。
2 embedding模型,文件后缀.pt或.safetensors, 文件大小20KB~300KB,训练简单效果一般,通常用于负面提示词应用,一个embedding相当你输入了一类负面的prompt提示词。

3 Lora模型,就是我们今天要学习的,文件后缀一般是.safetensors,(格式可以互转) 文件大小比embedding大比大模型小,几十MB~几百MB,训练相对容易,现在有了集成安装包就更简单了,硬件要求8G显存以上的卡就可以满足了。

二、环境准备
下载丹炉
目前最简单傻瓜式的就是下载国内B站@秋葉aaaki提供的集成安装包,下载即可用。
提取码:关注公众号发信息"下载丹炉"获取。
安装环境
1 一键更新

2 安装python
检测win电脑里面的python版本在3.10以上就不用重复安装。
setp1 搜索cmd,打开命令窗口
setp2 输入python 查看版本(需要确定你的python环境变量正确配置,才能用)
没有安装python的或者版本升级的如下:
安装python:
记得勾选:add python.exe to PATH 。自动配置环境变量。
一路下一步傻瓜安装完成即可。

手动配置环境变量:
右键“此电脑”,点击属性,进入设置界面:



三、Lora模型训练
准备图片素材
要求:8G左右的显卡同学,准备512*512的图片素材即可,更牛显卡的不建议超过1024*1024,找同一类风格图片或者同一个人物的不同角度不同姿态的图片。
批量裁剪:如果你从网上找图片,尺寸不一样,可以通过SD WEB UI批量裁剪(当然其他图片处理软件批处理也可以做到,比如PS-动作功能、美图秀秀批处理功能等)

setp1 打开SD WEB UI,附件功能-从目录进行批量处理
setp2 输入图片目录 和 输出目录,路径不要有中文字符。
setp3 图像放大,指定分辨率512*512
setp4 创建镜像,横向or纵向,这样可以多出来一倍的训练图片。
setp5 自动焦点剪切,识别主题的位置剪切。

图片打标
图片剪裁完成后,需要对每个图片进行打标,告诉计算机你这图里都有什么元素。
自动打标:
启动丹炉,双击“A启动脚本.bat”。
输入图片地址,启动即可。

打完后,看看图片文件夹,每个图片都多了一个txt文件:

手动修改tag:
最好自己检查下每个txt文件,里面的标签是否准确,对不满意的prompt,自行手动修改即可。
注意:不能有空的txt文件,按文件大小倒序找到这些文件,手动填写prompt即可。
丹炉配置
1、启动丹炉,双击“A启动脚本.bat”
2、选择你的底模,可以从你之前SD web UI里面去找,这里网上很多,不同底模适合不同类型的模型训练。我这里要训练纸片人风格的,用了“AnythingXL_v50.safetensors ”,注意不要有中文路径。然后设置分辨率和丹的名称。

3、选择刚才准备的图片素材,路径需要设置下,放在这个目录里:
…/train/XXX/8_XXX
XXX- 本次训练的项目名称自取英文即可,文件结构按这个来就行。

4、一切准备就绪,启动训练,交给时间吧@-@等着炼丹训练完成。祝你好运!



模型测试
把练好的模型,放在SD WEB UI测试你的模型吧!!


如何训练LorA
对于很多刚学习AI绘画的小伙伴而言,想要提升、学习新技能,往往是自己摸索成长,不成体系的学习效果低效漫长且无助。
如果你苦于没有一份Lora模型训练学习系统完整的学习资料,这份网易的《Stable Diffusion LoRA模型训练指南》电子书,尽管拿去好了。
包知识脉络 + 诸多细节。节省大家在网上搜索资料的时间来学习,也可以分享给身边好友一起学习。
由于内容过多,下面以截图展示目录及部分内容,完整文档领取方式点击下方微信卡片,即可免费获取!



篇幅有限,这里就不一一展示了,有需要的朋友可以点击下方的卡片进行领取!
相关文章:
Stable Diffusion教程|练丹师是如何炼丹的Lora模型训练
前言 还记得我们之前就讲过学习SD成为炼丹师不?那么今天就来手把手教大家炼丹,看看同一个角色或某种风格的小模型是如何制作出来的。 目录 1 炼丹介绍 2 环境准备 3 Lora模型训练 **一、**炼丹介绍 什么是炼丹? 早在学习SD地第一篇就…...
QT--SQLite
配置类相关的表,所以我使用sqlite,且QT自带该组件; 1.安装 sqlite-tools-win-x64-3460000、SQLiteExpert5.4.31.575 使用SQLiteExpert建好数据库.db文件,和对应的表后把db文件放在指定目录 ./db/program.db; 2.选择sql组件 3.新…...
【深度学习入门篇 ②】Pytorch完成线性回归!
🍊嗨,大家好,我是小森( ﹡ˆoˆ﹡ )! 易编橙终身成长社群创始团队嘉宾,橙似锦计划领衔成员、阿里云专家博主、腾讯云内容共创官、CSDN人工智能领域优质创作者 。 易编橙:一个帮助编程小…...
Syslog 管理工具
Syslog常被称为系统日志或系统记录,是一种用来在互联网协议(TCP/IP)的网上中传递记录档消息的标准,常用来指涉实际的Syslog 协议,或者那些提交syslog消息的应用程序或数据库。 系统日志协议(Syslog&#x…...
硅纪元AI应用推荐 | 百度橙篇成新宠,能写万字长文
“硅纪元AI应用推荐”栏目,为您精选最新、最实用的人工智能应用,无论您是AI发烧友还是新手,都能在这里找到提升生活和工作的利器。与我们一起探索AI的无限可能,开启智慧新时代! 百度橙篇,作为百度公司在202…...
Codeforces Round 954 (Div. 3)
🚀欢迎来到本文🚀 🍉个人简介:陈童学哦,彩笔ACMer一枚。 🏀所属专栏:Codeforces 本文用于记录回顾本彩笔的解题思路便于加深理解。 📢📢📢传送阵 A. X Axis解…...
【Django】报错‘staticfiles‘ is not a registered tag library
错误截图 错误原因总结 在django3.x版本中staticfiles被static替换了,所以这地方换位static即可完美运行 错误解决...
LeetCode 算法:二叉树的最近公共祖先 III c++
原题链接🔗:二叉树的最近公共祖先 难度:中等⭐️⭐️ 题目 给定一个二叉树, 找到该树中两个指定节点的最近公共祖先。 百度百科中最近公共祖先的定义为:“对于有根树 T 的两个节点 p、q,最近公共祖先表示为一个节点…...
Windows CMD 命令汇总表
Windows CMD 命令汇总表 Windows CMD 命令汇总表目录操作磁盘操作文件操作其他命令FTP 命令高级系统命令批处理命令网络命令安全和权限命令 Windows CMD 命令指南目录操作MD - 创建子目录CD - 切换当前目录RD - 删除子目录DIR - 显示目录内容PATH - 设置可执行文件的搜索路径TR…...
【python+appium】自动化测试
pythonappium自动化测试系列就要告一段落了,本篇博客咱们做个小结。 首先想要说明一下,APP自动化测试可能很多公司不用,但也是大部分自动化测试工程师、高级测试工程师岗位招聘信息上要求的,所以为了更好的待遇,我们还…...
vue 数据类型
文章目录 ref 创建:基本类型的响应式数据reactive 创建:对象类型的响应式数据ref 创建:对象类型的响应式数据ref 对比 reactive将一个响应式对象中的每一个属性,转换为ref对象(toRefs 与 toRef)computed (根据计算进行修改) ref 创…...
MySQL(基础篇)
DDL (Data Definition Language) 数据定义语言,用来定义数据库对象(数据库,表, 字段) DML (Data Manipulation Languag) 数据操作语言,用来对数据库表中的数据进行增删改 DQL (Data Query Language) 数据查询语言,用…...
springboot中通过jwt令牌校验以及前端token请求头进行登录拦截实战
前言 大家从b站大学学习的项目侧重点好像都在基础功能的实现上,反而一个项目最根本的登录拦截请求接口都不会写,怎么拦截?为什么拦截?只知道用户登录时我后端会返回一个token,这个token是怎么生成的,我把它…...
从零开始开发视频美颜SDK:实现直播美颜效果
因此,开发一款从零开始的视频美颜SDK,不仅可以节省成本,还能根据具体需求进行个性化调整。本文将介绍从零开始开发视频美颜SDK的关键步骤和实现思路。 一、需求分析与技术选型 在开发一款视频美颜SDK之前,首先需要进行详细的需求…...
极验语序点选验证码识别(一)
注意,本文只提供学习的思路,严禁违反法律以及破坏信息系统等行为,本文只提供思路 极验文字点选验证码不必多说,很多小伙伴,借助标注工具或者打码平台标注完数据集后,使用开源的目标检测网络即可完成,欢迎收看我之前的文章: Pytorch利用ddddocr辅助识别点选验证码 或者使…...
什么是 HTTP POST 请求?初学者指南与示范
在现代网络开发领域,理解并应用 HTTP 请求 方法是基本的要求,其中 "POST" 方法扮演着关键角色。 理解 POST 方法 POST 方法属于 HTTP 协议的一部分,主旨在于向服务器发送数据以执行资源的创建或更新。它与 GET 方法区分开来&…...
第一次作业
任务需求:1.DMz区内的服务器,办公区仅能在办公时间内(9-18)可以访问,生产区的设备全天可以访问 2.生产区不允许访问互联网,办公区和游客区可以访问互联网 3.办公区设备10.0.2.10不允许访问DMZ区的FTP服务器和http服务器,仅能ping通…...
【机器学习】12.十大算法之一支持向量机(SVM - Support Vector Machine)算法原理讲解
【机器学习】12.十大算法之一支持向量机(SVM - Support Vector Machine)算法原理讲解 一摘要二个人简介三基本概念四支持向量与超平面4.1 超平面(Hyperplane)4.2 支持向量(Support Vectors)4.3 核技巧&…...
使用 `useAppConfig` :轻松管理应用配置
title: 使用 useAppConfig :轻松管理应用配置 date: 2024/7/11 updated: 2024/7/11 author: cmdragon excerpt: 摘要:本文介绍了Nuxt开发中useAppConfig的使用,它便于访问和管理应用配置,支持动态加载资源、环境配置切换、权限…...
中国内陆水体氮沉降数据集(1990s-2010s)
全球大气氮沉降急剧增加对内陆水生态系统产生不良影响。中国是全球三大氮沉降热点地区之一,为了充分了解氮沉降对中国内陆水体的影响,制定合理的水污染治理方案,我们需要清楚的量化内陆水体的氮沉降通量。为此,我们利用LMDZ-OR-IN…...
Python:操作 Excel 折叠
💖亲爱的技术爱好者们,热烈欢迎来到 Kant2048 的博客!我是 Thomas Kant,很开心能在CSDN上与你们相遇~💖 本博客的精华专栏: 【自动化测试】 【测试经验】 【人工智能】 【Python】 Python 操作 Excel 系列 读取单元格数据按行写入设置行高和列宽自动调整行高和列宽水平…...
理解 MCP 工作流:使用 Ollama 和 LangChain 构建本地 MCP 客户端
🌟 什么是 MCP? 模型控制协议 (MCP) 是一种创新的协议,旨在无缝连接 AI 模型与应用程序。 MCP 是一个开源协议,它标准化了我们的 LLM 应用程序连接所需工具和数据源并与之协作的方式。 可以把它想象成你的 AI 模型 和想要使用它…...
大语言模型如何处理长文本?常用文本分割技术详解
为什么需要文本分割? 引言:为什么需要文本分割?一、基础文本分割方法1. 按段落分割(Paragraph Splitting)2. 按句子分割(Sentence Splitting)二、高级文本分割策略3. 重叠分割(Sliding Window)4. 递归分割(Recursive Splitting)三、生产级工具推荐5. 使用LangChain的…...
在 Nginx Stream 层“改写”MQTT ngx_stream_mqtt_filter_module
1、为什么要修改 CONNECT 报文? 多租户隔离:自动为接入设备追加租户前缀,后端按 ClientID 拆分队列。零代码鉴权:将入站用户名替换为 OAuth Access-Token,后端 Broker 统一校验。灰度发布:根据 IP/地理位写…...
JDK 17 新特性
#JDK 17 新特性 /**************** 文本块 *****************/ python/scala中早就支持,不稀奇 String json “”" { “name”: “Java”, “version”: 17 } “”"; /**************** Switch 语句 -> 表达式 *****************/ 挺好的ÿ…...
HarmonyOS运动开发:如何用mpchart绘制运动配速图表
##鸿蒙核心技术##运动开发##Sensor Service Kit(传感器服务)# 前言 在运动类应用中,运动数据的可视化是提升用户体验的重要环节。通过直观的图表展示运动过程中的关键数据,如配速、距离、卡路里消耗等,用户可以更清晰…...
Spring是如何解决Bean的循环依赖:三级缓存机制
1、什么是 Bean 的循环依赖 在 Spring框架中,Bean 的循环依赖是指多个 Bean 之间互相持有对方引用,形成闭环依赖关系的现象。 多个 Bean 的依赖关系构成环形链路,例如: 双向依赖:Bean A 依赖 Bean B,同时 Bean B 也依赖 Bean A(A↔B)。链条循环: Bean A → Bean…...
Python基于历史模拟方法实现投资组合风险管理的VaR与ES模型项目实战
说明:这是一个机器学习实战项目(附带数据代码文档),如需数据代码文档可以直接到文章最后关注获取。 1.项目背景 在金融市场日益复杂和波动加剧的背景下,风险管理成为金融机构和个人投资者关注的核心议题之一。VaR&…...
人机融合智能 | “人智交互”跨学科新领域
本文系统地提出基于“以人为中心AI(HCAI)”理念的人-人工智能交互(人智交互)这一跨学科新领域及框架,定义人智交互领域的理念、基本理论和关键问题、方法、开发流程和参与团队等,阐述提出人智交互新领域的意义。然后,提出人智交互研究的三种新范式取向以及它们的意义。最后,总结…...
Scrapy-Redis分布式爬虫架构的可扩展性与容错性增强:基于微服务与容器化的解决方案
在大数据时代,海量数据的采集与处理成为企业和研究机构获取信息的关键环节。Scrapy-Redis作为一种经典的分布式爬虫架构,在处理大规模数据抓取任务时展现出强大的能力。然而,随着业务规模的不断扩大和数据抓取需求的日益复杂,传统…...

