当前位置: 首页 > news >正文

操作系统——内存管理(面试准备)

虚拟内存

单片机没有操作系统,每次写完代码,都需要借助工具把程序烧录进去,这样程序才能跑起来。
另外,单片机的CPU是直接操作内存的物理地址。

在这里插入图片描述
在这种情况下,想在内存中同时运行两个程序是不可能的,如果第一个程序在2000的位置写入新值,将擦掉第二个程序放在相同位置上的内容,所以同时运行两个程序是根本不通的,会立刻崩溃。

操作系统如何解决

这里的关键问题是这两个程序都引用了绝对物理地址,这是我们最需要避免的。

我们可以把进程使用的地址隔离开来,让操作系统为每个进程分配一套独立的虚拟地址,人人都有,大家只操作自己的地址,互不干涉。
但是有个前提是每个进程都不能访问物理地址,至于虚拟地址最终怎么落到物理内存里,对进程来说是透明的,由操作系统安排。

在这里插入图片描述
操作系统会提供一种机制,将不同的虚拟地址和不同内存的物理地址映射起来。
如果程序要访问虚拟内存的时候,由操作系统转换成不同的物理地址,这样不同的进程运行的时候,写入的是不同的物理地址,这样就不会冲突了。

  • 我们程序使用的内存地址叫做虚拟内存地址
  • 存在硬件空间地址叫做物理内存地址

操作系统引入虚拟内存,进程将持有的虚拟地址通过CPU芯片中的内存管理单元MMU的映射关系,转换变成物理地址,再通过物理地址访问内存。

在这里插入图片描述
操作系统如何管理虚拟地址和物理地址之间的关系呢?

内存分段

程序由若干个逻辑分段组成,如可由代码分段、数据分段。栈段、堆段组成。不同的段有不同的属性,就用分段的形式把这些段分离出来。

分段机制下的虚拟地址由两部分组成,段选择因子和段内偏移量。

  • 段选择因子保存在段寄存器里面,段选择因子里面最重要的是段号,用作段表的索引。段表里保存的是这个段的基地址、界限和特权等级。
  • 段内偏移量位于0和段界限之间,如果段内偏移量是合法的,就将段基地址加上段内偏移量得到物理内存地址。

内存分段的缺点:

  • 内存碎片的问题。
  • 内存交换的效率低的问题。

我们来看这样一个例子。我现在手头的这台电脑,有 1GB 的内存。我们先启动一个图形渲染程序,占用了 512MB 的内存,接着启动一个 Chrome 浏览器,占用了 128MB 内存,再启动一个 Python 程序,占用了 256MB 内存。这个时候,我们关掉 Chrome,于是空闲内存还有 1024 - 512 - 256 = 256MB。按理来说,我们有足够的空间再去装载一个 200MB 的程序。但是,这 256MB 的内存空间不是连续的,而是被分成了两段 128MB 的内存。因此,实际情况是,我们的程序没办法加载进来。

内存交换
我们可以把Python程序占用的256MB内存写到硬盘上,然后再从硬盘上读回来到内存里面。不过读回来的时候,我们不再把它加载到原来的位置,而是紧紧跟在那已经被占用了的 512MB 内存后面。这样,我们就有了连续的 256MB 内存空间,就可以去加载一个新的 200MB 的程序。

如果自己安装过Linux操作系统,应该遇到过分配一个swap硬盘分区的问题。这块分出来的磁盘空间,就是专门给Linux操作系统进行内存交换用的。

虚拟内存、分段,再加上内存交换,看起来似乎已经解决了计算机同时装载运行很多个程序的问题。不过,你千万不要大意,这三者的组合仍然会遇到一个性能瓶颈。硬盘的访问速度要比内存慢很多,而每一次内存交换,我们都需要把一大段连续的内存数据写到硬盘上。所以,如果内存交换的时候,交换的是一个很占内存空间的程序,这样整个机器都会显得卡顿。为了解决内存分段的内存碎片和内存交换效率低的问题,就出现了内存分页。

内存分页

分段的好处是能产生连续的内存空间,但是会出现内存碎片和内存交换的空间太大的问题。

要解决这些问题,那么就要想出能少出现一些内存碎片的办法。另外,当需要进行内存交换的时候,让需要交换写入或者从磁盘装载的数据更少一点,这样就可以解决问题了。这个办法,也就是内存分页(Paging)。

分页是把整个虚拟和物理内存空间切成一段段固定尺寸的大小。这样一个连续并且尺寸固定的内存空间,称为页,Linux下,每一页为4KB。

虚拟地址与物理地址之间通过页表来映射。

页表实际上存储在CPU的内存管理单元(MMU)中,于是CPU可以直接通过MMU,找出要实际访问的物理内存地址。

当进程要访问的虚拟地址在页表中查不到时,系统会产生一个缺页异常,进入系统内核空间分配物理内存,更新进程页表,最后返回用户空间,恢复进程的运行。

分页怎么解决分段的内存碎片、内存交换效率低的问题?

由于内存空间都是预先划分好的,也就不会像分段会产生间隙非常小的内存,采用了分页,释放的内存都是以页为单位释放的,也就不会产生给进程使用的小内存。

如果内存空间不够,操作系统会把其它正在运行的进程中最近没使用的内存页面给释放掉,也就是暂时写作硬盘上,称为换出。一旦需要的时候,再加载进来,称为换入。

一次性写入磁盘的只有少数的一个页或者几个页,不会花太多时间,内存交换的效率也就相对较高。

分页方式使得我们在加载程序的时候,不再需要一次性把程序加载到物理内存中。我们完全可以在进行虚拟内存和物理内存的页之间的映射之后,并不真地把页加载到物理内存里,而是只在程序运行时,需要用到对应虚拟内存页里面的指令和数据时,再加载到物理内存里面去。

分页机制下,虚拟地址分为两部分,页号和页内便宜,页号作为页表的索引,页表包含物理页每页所在物理内存的基地址,这个基地址与页内偏移的组成就形成了物理内存地址。

对于一个内存地址转换,其实也就三个步骤:

  • 把虚拟内存地址,切分成页号和偏移量。
  • 根据页号,从页表里面,查询对应的物理页号。
  • 直接拿物理页号,加上前面的偏移量,就得到了物理内存地址。

简单分页

因为操作系统可以同时运行非常多的进程,也就意味着页表会非常庞大。

在32位的环境下,虚拟地址空间有4GB,假设一个页的大小是4KB,那么大概需要100万个页,每个页表项需要4个字节大小存储,那么共需要4MB的内存存储页表。

这4MB大小的页表,看起来也不是很大。但是要知道每个进程都有自己的虚拟地址空间,也就说都有自己的页表。

那么100个进程,就需要400MB的内存来存储页表,这是非常大的内存了,更别说64位的环境了。

多级页表

要解决上面的问题,就需要采用一种叫做多级页表的解决方案。

对于单页表的实现方式,在32位和页大小4KB的环境下,一个进程的页表需要装下100多万个页表项,并且每个页表项占用4字节大小,于是每个页表占用4MB大小的空间。

我们把这个100多万个页表项的单级页表再分页,将页表分为1024个页表(二级页表),每个表(二级页表)中包含1024个页表项,形成二级分页。

为什么多级分页比普通分页更节省内存?

分了二级页表,映射4GB地址空间就需要4KB(一级页表)+4MB(二级页表)的内存,这样占用空间不是更大了吗?

当然如果4GB的虚拟地址全部映射到了物理内存上,二级分页占用空间确实更大了,但是,我们不会为一个进程分配那么多内存。

每个进程都有4GB的虚拟地址空间,而对于大多数程序来说,其使用到的空间远未达到4GB,因为会存在部分对应的页表项都是空的,根本没有分配,对于已分配的页表项,如果存在最近一定时间未访问的页表,在物理内存紧张情况下,操作系统会将页面换出到硬盘,也就是说不会占用物理内存。

如果使用了二级分页,一级页表就可以覆盖整个4GB的虚拟地址空间,如果某一个一级页表的页表项没有被用到,就不需要创建这个页表项对应的二级页表了,即可以在需要时创建二级页表。

程序局部性原理

程序在运行时,对数据的访问往往呈现出局部性特征,即在一段时间内,程序的大部分执行都集中在程序的某一部分,并且这段代码所引用的数据也大多位于相邻的内存区域。

程序局部性原理可以分为两种形式:

  • 时间局部性:在程序执行过程中,如果某个指令或数据已经被访问过,那么在不久之后,该指令或数据很可能再次被访问。例如,在循环体内,同一组指令和数据会被反复执行多次。
  • 空间局部性:某个存储单元被访问过,那么在不久之后,其相邻的存储单元也很可能被访问,例如,数组中的相邻元素通常会被连续访问。

根据程序局部性原理,计算机体系结构中设计了多级缓存、虚拟存储器等技术,操作系统中设计了页面调度、LRU缓存替换算法等机制。

页表缓存TLB

多级页表虽然解决了空间上的问题,但是虚拟地址到物理地址的转换就多了几道转换的工序,这显然就降低了这两个地址转换的速度,也就是带来了时间上的开销。

程序是有局部性的,即在一段时间内,整个程序的执行仅限于程序中某一部分。相应地,执行所访问的存储空间也局限于某个内存区域。

我们利用这一特性,把最常访问的几个页表项存储到访问速度更快的硬件,于是计算机科学家们,就在CPU芯片中,加入了一个专门存放程序最常访问的页表项的Cache,这个Cache就是TLB,通常称为页表缓存,转址旁路缓存、快表等。

在 CPU 芯片里面,封装了内存管理单元(Memory Management Unit)芯片,它用来完成地址转换和 TLB 的访问与交互。有了 TLB 后,那么 CPU 在寻址时,会先查 TLB,如果没找到,才会继续查常规的页表。TLB 的命中率其实是很高的,因为程序最常访问的页就那么几个。

Linux内存管理

在Linux操作系统中,虚拟地址空间的内部又被分为内核空间和用户空间两部分。

在这里插入图片描述
32位系统的内核空间占用1G,位于最高处,剩下的3G是用户空间。

内核空间与用户空间的区别:

  • 进程在用户态时,只能访问用户空间内存;
  • 只有进入内核态时,才可以访问内核空间的内存。

虽然每个进程都有自己的虚拟内存,但是每个虚拟内存中的内核地址,其实关联的都是相同的物理内存。
进程切换到内核态后,就可以很方便地访问内核内存空间。

在这里插入图片描述

相关文章:

操作系统——内存管理(面试准备)

虚拟内存 单片机没有操作系统,每次写完代码,都需要借助工具把程序烧录进去,这样程序才能跑起来。 另外,单片机的CPU是直接操作内存的物理地址。 在这种情况下,想在内存中同时运行两个程序是不可能的,如果第…...

vue3实现vuedraggable实现拖拽到垃圾桶图标位置进行删除

当使用Vue 3和vuedraggable库时,你可以按照以下方式实现拖拽到垃圾桶图标位置进行删除的功能: 首先,确保你已经安装了vuedraggable库。如果没有安装,可以通过以下命令进行安装: vuedraggable 和vue-draggable-plus使…...

MySQL向自增列插入0失败问题

问题 在一次上线时,发现通过脚本添加的状态表中,待提交的状态不正确,本来应该是0,线上是101。 原因 默认情况下,MySQL对应自增列,认为0和null等价(因为mysql认为0不是最佳实践不推荐使用&…...

Python:Python基础知识(注释、命名、数据类型、运算符)

.注释 Python有两种注释方法:单行注释和多行注释。单行注释以#开头,多行注释以三个单引号 或三个双引号 """ 开头和结尾。 2.命名规则 命名规则: 大小写字母、数字、下划线和汉字等字符及组合; 注意事项: 大小写敏感、首…...

Protobuf: 大数据开发中的高效数据传输利器

作为一名大数据开发者,我经常需要处理海量的数据传输和存储。在这个过程中,选择一个高效、可靠的数据序列化工具至关重要。今天,我想和大家分享一下我在项目中使用 Protobuf 的经历。 目录 故事背景Protobuf 简介优点: 实战案例示…...

MySQL 面试相关问题

写在前面: 不喜勿喷,暴躁作者又不求你给钱【没办法,遇见的狗喷子太多了🐶】欢迎大家在评论区留言,指正文章中的信息错误有一些其他相关的问题,可以直接评论区留言,作者看到会及时更新到文章末尾…...

java org.aeonbits.owner库介绍

org.aeonbits.owner 是一个用于简化Java应用程序配置管理的库。它通过使用接口和注解来定义和读取配置,使得配置管理更加简洁和类型安全。以下是对这个库的一些主要特性和功能的介绍: 主要特性 类型安全的配置: OWNER 库允许开发者使用接口定义配置,从而提供了编译时的类型…...

YOLOv10改进 | 添加注意力机制篇 | 添加LSKAttention大核注意力机制助力极限涨点

一、本文介绍 在这篇文章中,我们将讲解如何将LSKAttention大核注意力机制应用于YOLOv10,以实现显著的性能提升。首先,我们介绍LSKAttention机制的基本原理,它主要通过将深度卷积层的2D卷积核分解为水平和垂直1D卷积核&#xff0…...

学习笔记——动态路由——IS-IS中间系统到中间系统(特性之路由撤销)

6、路由撤销 ISIS路由协议的路由信息是封装在LSP报文中的TLV中的,但是它对撤销路由的处理和OSPF的处理方式类似。 在ISIS中撤销一条路由实则是将接口下的ISIS关闭: 撤销内部路由: 在ISIS中路由信息是由IP接口TLV和IP内部可达性TLV共同来描…...

智能无人机控制:STM32微控制器与机器学习集成(内附资料)

智能无人机控制结合了STM32微控制器的实时处理能力和机器学习算法的决策能力,以实现更高级的自主飞行和任务执行。以下是智能无人机控制系统的概述,包括系统架构、关键组件、集成方法和示例代码。 系统概述 智能无人机控制系统利用STM32微控制器进行实…...

力扣 454四数相加

这个题给了四个数组,可以两两判断,就类比两数相加那道题了 对于num1 num2 用unordered_map存储,key是num1,num2中数字相加之和,value是值出现的次数 for(int a:num1) {for(int b:num2 {map[ab]; 最后要计算四个数…...

Java面试题系列 - 第9天

题目:深入探讨Java中的设计模式及其应用场景 背景说明:设计模式是软件工程中解决问题的常见方案,它们提供了经过验证的模板,帮助开发者解决在软件设计过程中遇到的特定问题。在Java中,熟悉并正确应用设计模式能够显著…...

数据结构【顺序表】

目录 ​ 线性表 顺序表 概念与结构 分类 静态顺序表 动态顺序表 动态顺序表的实现 在头文件中创建结构体 初始化顺序表 销毁顺序表(可以留到后面再看) 尾插数据 申请空间 打印顺序表数据 头插数据 尾删除数据 头删除数据 在指定位置插…...

【JavaScript 报错】未捕获的类型错误:Uncaught TypeError

🔥 个人主页:空白诗 文章目录 一、错误原因分析1. 调用不存在的方法2. 访问未定义的属性3. 数据类型不匹配4. 函数参数类型不匹配 二、解决方案1. 检查方法和属性是否存在2. 使用可选链操作符3. 数据类型验证4. 函数参数类型检查 三、实例讲解四、总结 在…...

html+css+js随机验证码

随机画入字符、线条 源代码在图片后面 点赞❤️关注&#x1f60d;收藏⭐️ 互粉必回 图示 源代码 <!DOCTYPE html> <html lang"en"> <head> <meta charset"UTF-8"> <meta name"viewport" content"…...

WPS打开PDF文件的目录

WPS打开PDF文件的目录 其实WPS中PDF文件并没有像Word那样标准的目录&#xff0c;但是倒是有书签&#xff0c;和目录一个效果 点击左上角书签选项&#xff0c;或者使用Alt Shift 1快捷键即可...

常见 Web漏洞分析与防范研究

前言&#xff1a; 在当今数字化时代&#xff0c;Web应用程序扮演着重要的角色&#xff0c;为我们提供了各种在线服务和功能。然而&#xff0c;这些应用程序往往面临着各种潜在的安全威胁&#xff0c;这些威胁可能会导致敏感信息泄露、系统瘫痪以及其他不良后果。 SQL注入漏洞 …...

暗黑魅力:Xcode全面拥抱应用暗黑模式开发指南

暗黑魅力&#xff1a;Xcode全面拥抱应用暗黑模式开发指南 随着苹果在iOS 13和iPadOS 13中引入暗黑模式&#xff0c;用户可以根据自己的喜好或环境光线选择不同的界面主题。作为开发者&#xff0c;支持暗黑模式不仅能提升用户体验&#xff0c;还能彰显应用的专业性。Xcode提供了…...

【游戏引擎之路】登神长阶(七)——x86汇编学习:凡做难事,必有所得

5月20日-6月4日&#xff1a;攻克2D物理引擎。 6月4日-6月13日&#xff1a;攻克《3D数学基础》。 6月13日-6月20日&#xff1a;攻克《3D图形教程》。 6月21日-6月22日&#xff1a;攻克《Raycasting游戏教程》。 6月23日-7月1日&#xff1a;攻克《Windows游戏编程大师技巧》。 7月…...

在 Windows 平台搭建 MQTT 服务

引言 MQTT 是一种轻量级、基于发布/订阅模式的消息传输协议&#xff0c;旨在用极小的代码空间和网络带宽为物联网设备提供简单、可靠的消息传递服务。MQTT 经过多年的发展&#xff0c;如今已被广泛应用于资源开采、工业制造、移动通信、智能汽车等各行各业&#xff0c;使得 MQ…...

jdevelope安装

准备 1.jdk1.8&#xff08;已经安装不做记录&#xff09; 2.下载jdevelope安装包 3.安装包安装jdevelope开发工具 4.创建或导入项目 下载jdevelope安装包 官网下载地址&#xff1a;https://edelivery.oracle.com 安装包安装jdevelope开发工具 cmd管理员权限运行安装脚本…...

排序(一)——冒泡排序、直接插入排序、希尔排序(BubbleSOrt,InsertSort,ShellSort)

欢迎来到繁星的CSDN&#xff0c;本期的内容主要包括冒泡排序(BubbleSort&#xff09;&#xff0c;直接插入排序(InsertSort)&#xff0c;以及插入排序进阶版希尔排序&#xff08;ShellSort&#xff09;。 废话不多说&#xff0c;直接上正题&#xff01; 一、冒泡排序 冒泡排序…...

synchronized关键字详解(全面分析)

目录 synchronized关键字详解1、synchronized关键字简介2、synchronized作用和使用场景作用使用场景①、用在代码块上(类级别同步)②、用在代码块上(对象级别同步)③、用在普通方法上(对象级别同步)④、用在静态方法上(类级别同步)总结&#xff1a; 3、synchronized底层原理&am…...

数据建设实践之大数据平台(三)

安装hadoop 上传安装文件到/opt/software目录并解压 [bigdatanode101 software]$ tar -zxvf hadoop-3.3.5.tar.gz -C /opt/services/ 配置环境变量 [bigdatanode101 ~]$ sudo vim /etc/profile.d/bigdata_env.sh export JAVA_HOME/opt/services/jdk1.8.0_161 export ZK_HO…...

TypeScript中的交叉类型

交叉类型&#xff1a;将多个类型合并为一个类型&#xff0c;使用&符号连接。 type AProps { a: string }type BProps { b: number }type allProps AProps & BPropsconst Info: allProps {a: 小月月,b: 7} 我们可以看到交叉类型是结合两个属性的属性值&#xff0c;那…...

CNN -1 神经网络-概述2

CNN -1 神经网络-概述2 一:神经网络(operator)1> 线性层(Fully Connected Layer)2> 卷积层(Convolutional Layer)3> 池化层(Pooling Layer)4> 循环层(Recurrent Layer)5> 归一化层(Normalization Layer)6> 激活函数(Activation Function)7>…...

利用js实现图片压缩功能

图片压缩在众多应用场景中扮演着至关重要的角色&#xff0c;尤其是在客户端上传图片时。原始图片往往体积庞大&#xff0c;直接上传不仅消耗大量带宽资源&#xff0c;还可能导致上传速度缓慢&#xff0c;严重影响用户体验。因此&#xff0c;在图片上传至服务器前对其进行压缩处…...

2024.7.10 刷题总结

2024.7.10 **每日一题** 2970.统计移除递增子数组的数目 Ⅰ&#xff0c;这道题是一个考察双指针的题目&#xff0c;也考察了数组的基本性质。题目的意思是要统计有多少个子数组能满足移除后剩下的元素为严格递增的关系&#xff0c;刚开始没考虑到移除的元素要是连续的&#xff…...

ES6 async 函数详解 (十)

async 函数是什么&#xff1f;一句话&#xff0c;它就是 Generator 函数的语法糖。 const gen function* () {const f1 yield readFile(/etc/fstab);const f2 yield readFile(/etc/shells);console.log(f1.toString());console.log(f2.toString()); };const asyncReadFile …...

【安全设备】入侵检测

一、什么是入侵检测 入侵检测是一种网络安全技术&#xff0c;用于监测和识别对计算机系统或网络的恶意使用行为或未经授权的访问。入侵检测系统&#xff08;IDS&#xff09;是实现这一目标的技术手段&#xff0c;其主要目的是确保计算机系统的安全&#xff0c;通过及时发现并报…...