Java Stream API详解:高效处理集合数据的利器
引言
Java 8引入了许多新特性,其中最为显著的莫过于Lambda表达式和Stream API。Stream API提供了一种高效、简洁的方法来处理集合数据,使代码更加简洁明了,且具有较高的可读性和可维护性。本文将深入探讨Java Stream API的使用,包括基础概念、常用操作、并行处理、实战案例以及最佳实践等内容。
目录
- 什么是Stream API
- Stream API的基础操作
- 创建Stream
- 中间操作
- 终端操作
- Stream API的高级操作
- 排序
- 筛选
- 映射
- 规约
- 收集
- 并行Stream
- Stream API实战案例
- 处理集合数据
- 文件操作
- 数据库操作
- Stream API的最佳实践
- 常见问题与解决方案
- 总结
什么是Stream API
Stream API是Java 8引入的一种用于处理集合数据的抽象,它允许以声明性方式(类似SQL语句)来处理数据。Stream API提供了许多强大的操作,可以用来对集合进行过滤、排序、映射、规约等操作,极大地简化了代码。
特点
- 声明性编程:使用Stream API可以以声明性的方式编写代码,减少样板代码。
- 链式调用:Stream API的操作可以链式调用,提高代码的可读性。
- 惰性求值:中间操作是惰性求值的,只有在执行终端操作时才会进行计算。
- 并行处理:支持并行处理,可以充分利用多核CPU的优势。
Stream API的基础操作
创建Stream
Stream API提供了多种方式来创建Stream,常见的有以下几种:
- 从集合创建:
List<String> list = Arrays.asList("a", "b", "c");
Stream<String> stream = list.stream();
- 从数组创建:
String[] array = {"a", "b", "c"};
Stream<String> stream = Arrays.stream(array);
- 使用
Stream.of:
Stream<String> stream = Stream.of("a", "b", "c");
- 使用
Stream.generate:
Stream<Double> stream = Stream.generate(Math::random).limit(10);
- 使用
Stream.iterate:
Stream<Integer> stream = Stream.iterate(0, n -> n + 2).limit(10);
中间操作
中间操作用于转换Stream,是惰性求值的,常见的中间操作有以下几种:
filter:用于过滤元素。
Stream<String> stream = list.stream().filter(s -> s.startsWith("a"));
map:用于映射每个元素到对应的结果。
Stream<String> stream = list.stream().map(String::toUpperCase);
flatMap:用于将每个元素转换为Stream,然后合并成一个Stream。
Stream<String> stream = list.stream().flatMap(s -> Stream.of(s.split("")));
distinct:用于去重。
Stream<String> stream = list.stream().distinct();
sorted:用于排序。
Stream<String> stream = list.stream().sorted();
peek:用于在处理过程中查看每个元素。
Stream<String> stream = list.stream().peek(System.out::println);
终端操作
终端操作用于启动Stream的计算,并生成结果,常见的终端操作有以下几种:
forEach:对每个元素执行操作。
list.stream().forEach(System.out::println);
collect:将Stream转换为其他形式。
List<String> result = list.stream().collect(Collectors.toList());
reduce:将Stream中的元素规约成一个值。
Optional<String> result = list.stream().reduce((s1, s2) -> s1 + s2);
toArray:将Stream转换为数组。
String[] array = list.stream().toArray(String[]::new);
count:计算元素个数。
long count = list.stream().count();
anyMatch、allMatch、noneMatch:用于匹配判断。
boolean anyMatch = list.stream().anyMatch(s -> s.startsWith("a"));
boolean allMatch = list.stream().allMatch(s -> s.startsWith("a"));
boolean noneMatch = list.stream().noneMatch(s -> s.startsWith("a"));
findFirst、findAny:用于查找元素。
Optional<String> first = list.stream().findFirst();
Optional<String> any = list.stream().findAny();
Stream API的高级操作
排序
使用sorted方法对Stream进行排序,可以传入一个比较器。
List<String> list = Arrays.asList("b", "c", "a");
List<String> sortedList = list.stream().sorted().collect(Collectors.toList());
// 逆序排序
List<String> sortedListDesc = list.stream().sorted(Comparator.reverseOrder()).collect(Collectors.toList());
筛选
使用filter方法对Stream中的元素进行筛选。
List<String> list = Arrays.asList("a", "b", "c");
List<String> filteredList = list.stream().filter(s -> s.startsWith("a")).collect(Collectors.toList());
映射
使用map方法对Stream中的元素进行映射。
List<String> list = Arrays.asList("a", "b", "c");
List<String> mappedList = list.stream().map(String::toUpperCase).collect(Collectors.toList());
规约
使用reduce方法对Stream中的元素进行规约。
List<String> list = Arrays.asList("a", "b", "c");
String result = list.stream().reduce("", (s1, s2) -> s1 + s2);
收集
使用collect方法将Stream转换为其他形式。
List<String> list = Arrays.asList("a", "b", "c");
List<String> collectedList = list.stream().collect(Collectors.toList());
Set<String> collectedSet = list.stream().collect(Collectors.toSet());
String joinedString = list.stream().collect(Collectors.joining(","));
并行Stream
并行Stream可以充分利用多核CPU的优势,提高数据处理的效率。可以使用parallelStream方法创建并行Stream。
List<String> list = Arrays.asList("a", "b", "c");
List<String> parallelList = list.parallelStream().map(String::toUpperCase).collect(Collectors.toList());
也可以使用parallel方法将普通Stream转换为并行Stream。
List<String> list = Arrays.asList("a", "b", "c");
List<String> parallelList = list.stream().parallel().map(String::toUpperCase).collect(Collectors.toList());
需要注意的是,并行Stream并不是总是比串行Stream更快,具体需要根据具体情况进行测试。
Stream API实战案例
处理集合数据
案例一:过滤并转换集合
给定一个包含若干字符串的集合,过滤掉长度小于3的字符串,并将剩余字符串转换为大写。
List<String> list = Arrays.asList("a", "ab", "abc", "abcd");
List<String> result = list.stream().filter(s -> s.length() >= 3).map(String::toUpperCase).collect(Collectors.toList());
System.out.println(result); // 输出:[ABC, ABCD]
案例二:计算平均值
给定一个包含若干整数的集合,计算所有整数的平均值。
List<Integer> list = Arrays.asList(1, 2, 3, 4, 5);
OptionalDouble average = list.stream().mapToInt(Integer::intValue).average();
average.ifPresent(System.out::println); // 输出:3.0
文件操作
案例三:读取文件内容
使用Stream API
读取文件内容并输出到控制台。
try (Stream<String> lines = Files.lines(Paths.get("example.txt"))) {lines.forEach(System.out::println);
} catch (IOException e) {e.printStackTrace();
}
案例四:统计单词出现次数
读取文件内容并统计每个单词出现的次数。
try (Stream<String> lines = Files.lines(Paths.get("example.txt"))) {Map<String, Long> wordCount = lines.flatMap(line -> Arrays.stream(line.split("\\W+"))).collect(Collectors.groupingBy(String::toLowerCase, Collectors.counting()));wordCount.forEach((word, count) -> System.out.println(word + ": " + count));
} catch (IOException e) {e.printStackTrace();
}
数据库操作
案例五:处理数据库查询结果
假设我们有一个数据库表users,包含字段id、name和age。我们可以使用Stream API处理查询结果。
List<User> users = queryDatabase();
List<String> names = users.stream().filter(user -> user.getAge() > 18).map(User::getName).collect(Collectors.toList());
System.out.println(names);
Stream API的最佳实践
- 避免不必要的并行化:并行Stream并不是总是更快,应该根据具体情况进行选择。
- 合理使用中间操作和终端操作:中间操作是惰性求值的,只有在执行终端操作时才会进行计算。
- 注意Stream的可复用性:Stream一旦被消费就不能再使用,如果需要复用,可以考虑将Stream转换为集合再使用。
- 使用合适的收集器:
Collectors类提供了多种收集器,可以根据具体需求选择合适的收集器。 - 处理异常:在使用Stream API时,需要处理可能出现的异常,尤其是在文件操作和数据库操作中。
常见问题与解决方案
Stream已关闭
Stream一旦被消费就不能再使用,如果需要复用,可以考虑将Stream转换为集合再使用。
List<String> list = Arrays.asList("a", "b", "c");
Stream<String> stream = list.stream();
stream.forEach(System.out::println);
stream.forEach(System.out::println); // 会抛出IllegalStateException
性能问题
并行Stream并不是总是比串行Stream更快,具体需要根据具体情况进行测试。可以使用ForkJoinPool来优化并行Stream的性能。
ForkJoinPool customThreadPool = new ForkJoinPool(4);
customThreadPool.submit(() ->list.parallelStream().forEach(System.out::println)
).get();
内存泄漏
在使用Stream API处理大数据量时,需要注意内存泄漏的问题。可以使用close方法关闭Stream,或者使用try-with-resources语句自动关闭Stream。
try (Stream<String> lines = Files.lines(Paths.get("example.txt"))) {lines.forEach(System.out::println);
} catch (IOException e) {e.printStackTrace();
}
总结
本文详细介绍了Java Stream API的使用,包括基础操作、高级操作、并行处理、实战案例以及最佳实践等内容。通过合理利用Stream API,开发者可以大大简化代码,提高代码的可读性和可维护性,同时还可以提高数据处理的效率。希望本文对你在Java开发中的Stream API使用有所帮助。
Java Stream API是处理集合数据的强大工具,通过灵活运用各种操作,可以实现高效的数据处理和流式计算。如果你还没有使用过Stream API,建议尽快学习和掌握这一强大的工具,将其应用到你的项目中,提升开发效率和代码质量。
相关文章:
Java Stream API详解:高效处理集合数据的利器
引言 Java 8引入了许多新特性,其中最为显著的莫过于Lambda表达式和Stream API。Stream API提供了一种高效、简洁的方法来处理集合数据,使代码更加简洁明了,且具有较高的可读性和可维护性。本文将深入探讨Java Stream API的使用,包…...
Python使用策略模式和openpyxl库创建Excel文件并追加内容
from openpyxl import load_workbook# 数据数组 data [[1, 2, 3],[4, 5, 6],[7, 8, 9] ]# 打开现有的 Excel 文件 excel_file sheetApend_example.xlsx wb load_workbook(excel_file)# 选择要追加数据的工作表 sheet_name test_Sheet2 # 指定要追加数据的工作表名称 sheet…...
libcoap3对接华为云平台
文章目录 前言一、平台注册二、引入源码库1.libcoap仓库编译2.分析网络报文3.案例代码4.编译&运行 总结 前言 通过libcoap3开源代码库对接华为云平台,本文章将讨论加密与不加密的方式对接华为云平台。 一、平台注册 首先,你需要在华为云平台上创建…...
【鸿蒙学习笔记】关系型数据库概述
目录标题 关系型数据库的运行机制样例代码共通方法 DBUtilsIndex 代码效果 关系型数据库的运行机制 1、 关系型数据库对应用提供通用的操作接口,底层使用SQLite作为持久化存储引擎,支持SQLite具有的数据库特性,包括但不限于事务、索引、视图…...
Find My网球拍|苹果Find My技术与网球拍结合,智能防丢,全球定位
网球是球类运动项目之一,网球拍作为这项运动的必备工具,有木质球拍、铝合金球拍、钢质球拍和复合物(尼龙、碳素)球拍,任何材质的球拍均可用于比赛。网球拍由拍头、拍喉、拍柄组成,在使用时还需要配合网球线…...
windows环境下部署多个端口Tomcat服务和开机自启动设置保姆级教程
前言 本文主要介绍了 windows环境下,配置多个Tomcat设置不同端口启动服务。其实在思路上Linux上也是适用的,只是 Linux 上没有可视化客户端,会麻烦些,但总体的思路上是一样的。 注:文章中涉及些文字和图片是搬运了其他…...
科普文:一文搞懂jvm实战(四)深入理解逃逸分析Escape Analysis
概叙 Java 中的对象是否都分配在堆内存中? 好了太抽象了,那具体一点,看看下面这个对象是在哪里分配内存? public void test() { Object object new Object(); }这个方法中的object对象,是在堆中分配内存么࿱…...
中文大模型发展到哪一个阶段了?
中文大模型发展到哪一个阶段了? 近日,中文大模型综合性测评基准SuperCLUE,发布了上半年大模型中文综合评测报告。“百模大战”中,OpenAI的GPT-4o是表现最优秀的大模型,但国内大模型已将差缩小至4.8%。国内大模型崛起迅…...
【PostgreSQL】Spring boot + Mybatis-plus + PostgreSQL 处理json类型情况
Spring boot Mybatis-plus PostgreSQL 处理json类型情况 一、前言二、技术栈三、背景分析四、方案分析4.1 在PostgreSQL 数据库中直接存储 json 对象4.2 在PostgreSQL 数据库中存储 json 字符串 五、自定义类型处理器5.1 定义类型处理器5.2 使用自定义类型处理器 一、前言 在…...
华为910b推理Qwen1.5-72b
前情提要:华为910b部署训练推理大模型,本人之前并没有接触过,所以,写此文档进行记录。 (注意:版本适配很重要!!不然就像我一样走了好多坑~~~) 首先,看一张图…...
legoloam算法环境配置和调试笔记
安装gtsam 参考 Ubuntu20.04安装gtsam记录_gtsam安装-CSDN博客 mkdir buildcd buildcmake .. make -...
如何用CSS3画一个三角形?
要用 CSS3 画一个三角形,可以利用元素的边框和透明边框的特性来实现。以下是一个简单的示例代码: .triangle {width: 0;height: 0;border-left: 50px solid transparent; /* 左边框为透明,控制三角形的左斜边 */border-right: 50px solid tr…...
不同型号的GD32 MCU如何区分?
大家是否碰到过以下应用场景:同一套软件代码希望跑在不同型号的GD32 MCU中,但有些地方需要根据MCU型号进行调整?或者上位机或其他MCU与GD32 MCU通信时需要知道对应的MCU型号是哪个? 此时,我们就需要了解如何获取以及区…...
关于windows下编译xLua插件的流程记录
1.工程准备 1.xLua工程:GitHub - Tencent/xLua: xLua is a lua programming solution for C# ( Unity, .Net, Mono) , it supports android, ios, windows, linux, osx, etc. 2.build_xlua_with_libs工程:GitHub - chexiongsheng/build_xlua_with_libs…...
Hadoop简明教程
文章目录 关于HadoopHadoop拓扑结构Namenode 和 Datanode 基本管理启动Hadoop启动YARN验证Hadoop服务停止Hadoop停止HDFS Hadoop集群搭建步骤准备阶段Java环境配置Hadoop安装与配置HDFS格式化与启动服务测试集群安装额外组件监控与维护: 使用Docker搭建集群使用Hado…...
基于STM32设计的药品柜温湿度监测系统(华为云IOT)(184)
基于STM32设计的药品柜温湿度监测系统(华为云IOT)(184) 文章目录 一、前言1.1 项目介绍【1】项目功能介绍【2】整体需求总结【3】项目硬件模块组成1.2 设计思路【1】整体设计思路【2】ESP8266工作模式配置【3】华为云IOT手机APP界面开发思路1.3 项目开发背景【1】选题的意义【2…...
SpringBoot源码阅读(10)——后处理器
后处理器是在监听器EnvironmentPostProcessorApplicationListener中被加载。 入口在SpringApplication实例方法prepareEnvironment,第343行。 listeners.environmentPrepared(bootstrapContext, environment);这里触发了事件ApplicationEnvironmentPreparedEvent 相…...
【源码开源】C#桌面应用开发:串口调试助手
c#桌面应用开发 1、环境搭建和工程创建:参照番茄定时器项目 工程创建参照 2、界面布局设计 3、具体功能函数 (1)端口扫描: private void btn_com_scan_Click(object sender, EventArgs e){//端口号扫描ReflashPortToComboBox(…...
malloc与free函数的用法(精简全面 · 一看即懂)
前言:Hello大家好😘,我是心跳sy,今天为大家带来malloc函数与free函数的用法,我们一起来看看吧! 目录 一、malloc函数 💫 1、⭐️malloc函数对应的头文件⭐️ 2、⭐️malloc函数的作用⭐️ 3…...
强制升级最新系统,微软全面淘汰Win10和部分11用户
说出来可能不信,距离 Windows 11 正式发布已过去整整三年时间,按理说现在怎么也得人均 Win 11 水平了吧? 然而事实却是,三年时间过去 Win 11 占有率仅仅突破到 29%,也就跳起来摸 Win 10 屁股的程度。 2024 年 6 月 Wi…...
iPhone密码忘记了办?iPhoneUnlocker,iPhone解锁工具Aiseesoft iPhone Unlocker 高级注册版分享
平时用 iPhone 的时候,难免会碰到解锁的麻烦事。比如密码忘了、人脸识别 / 指纹识别突然不灵,或者买了二手 iPhone 却被原来的 iCloud 账号锁住,这时候就需要靠谱的解锁工具来帮忙了。Aiseesoft iPhone Unlocker 就是专门解决这些问题的软件&…...
Selenium常用函数介绍
目录 一,元素定位 1.1 cssSeector 1.2 xpath 二,操作测试对象 三,窗口 3.1 案例 3.2 窗口切换 3.3 窗口大小 3.4 屏幕截图 3.5 关闭窗口 四,弹窗 五,等待 六,导航 七,文件上传 …...
在 Spring Boot 项目里,MYSQL中json类型字段使用
前言: 因为程序特殊需求导致,需要mysql数据库存储json类型数据,因此记录一下使用流程 1.java实体中新增字段 private List<User> users 2.增加mybatis-plus注解 TableField(typeHandler FastjsonTypeHandler.class) private Lis…...
高考志愿填报管理系统---开发介绍
高考志愿填报管理系统是一款专为教育机构、学校和教师设计的学生信息管理和志愿填报辅助平台。系统基于Django框架开发,采用现代化的Web技术,为教育工作者提供高效、安全、便捷的学生管理解决方案。 ## 📋 系统概述 ### 🎯 系统定…...
在 Visual Studio Code 中使用驭码 CodeRider 提升开发效率:以冒泡排序为例
目录 前言1 插件安装与配置1.1 安装驭码 CodeRider1.2 初始配置建议 2 示例代码:冒泡排序3 驭码 CodeRider 功能详解3.1 功能概览3.2 代码解释功能3.3 自动注释生成3.4 逻辑修改功能3.5 单元测试自动生成3.6 代码优化建议 4 驭码的实际应用建议5 常见问题与解决建议…...
13.10 LangGraph多轮对话系统实战:Ollama私有部署+情感识别优化全解析
LangGraph多轮对话系统实战:Ollama私有部署+情感识别优化全解析 LanguageMentor 对话式训练系统架构与实现 关键词:多轮对话系统设计、场景化提示工程、情感识别优化、LangGraph 状态管理、Ollama 私有化部署 1. 对话训练系统技术架构 采用四层架构实现高扩展性的对话训练…...
手动给中文分词和 直接用神经网络RNN做有什么区别
手动分词和基于神经网络(如 RNN)的自动分词在原理、实现方式和效果上有显著差异,以下是核心对比: 1. 实现原理对比 对比维度手动分词(规则 / 词典驱动)神经网络 RNN 分词(数据驱动)…...
leetcode 386. 字典序排数 中等
给你一个整数 n ,按字典序返回范围 [1, n] 内所有整数。 你必须设计一个时间复杂度为 O(n) 且使用 O(1) 额外空间的算法。 示例 1: 输入:n 13 输出:[1,10,11,12,13,2,3,4,5,6,7,8,9]示例 2: 输入:n 2…...
1.springmvc基础入门(一)
1.Spring MVC概念 Spring MVC 是 Spring Framework 提供的 Web 组件,全称是 Spring Web MVC,是⽬前主流的实现 MVC 设计模式的框架,提供前端路由映射、视图解析等功能。 Java Web 开发者必须要掌握的技术框架。 2.Spring MVC 功能 MVC&am…...
解决SQL Server SQL语句性能问题(9)——SQL语句改写(2)
9.4.3. update语句改写 与Oracle类似,SQL Server中,update语句被用户相关技术人员广泛应用于现实日常工作中。但是,有些情况下,尤其是海量数据场景中,update语句也许会带来性能方面的严重问题或极大隐患。因此,为了解决和消除update语句导致的性能问题或隐患,我们将需对…...
