paddlenlp cpu windows 下测试gpt
paddlenlp
安装python3.11版本
conda create -n python311 python=3.11
激活python
conda activate python311
安装paddlepaddle
conda install paddlepaddle==3.0.0b0 -c paddle
pip install paddlenlp==3.0.0b0 -U -i https://pypi.tuna.tsinghua.edu.cn/simple
windows下提示:
AttributeError: module ‘mmap’ has no attribute ‘MAP_PRIVATE’
解决方法:
E:\Anaconda3\envs\python311\Lib\site-packages\paddlenlp\utils\safetensors.py
修改280行:
self.file_mmap = mmap.mmap(self.file.fileno(), 0, access=mmap.MAP_PRIVATE)
为
self.file_mmap = mmap.mmap(self.file.fileno(), 0, access=mmap.ACCESS_READ)
错误提示:RuntimeError: (NotFound) The kernel with key (CPU, Undefined(AnyLayout), float16) of kernel multiply is not registered. Selected wrong DataType float16. Paddle support following DataTypes: complex64, bool, bfloat16, complex128, float32, int32, float64, int64
原因:
在CPU环境调用时,模型支持dtype为float32或者float64;
在GPU环境(非Ampere架构)调用时,模型支持dtype为float16、float32或者float64;
在GPU环境(Ampere及后续架构)调用时,模型支持dtype为bfloat16、float16、float32或者float64;
测试代码:
import os
from modelscope import snapshot_downloados.environ["HF_ENDPOINT"] = "https://hf-mirror.com"
os.environ["TF_ENABLE_ONEDNN_OPTS"] = "0"from paddlenlp.transformers import AutoTokenizer, AutoModelForCausalLMmodel_dir = snapshot_download("Qwen/Qwen2-0.5B")tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen2-0.5B",trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen2-0.5B", dtype="float32")
input_features = tokenizer("你好!请自我介绍一下。", return_tensors="pd")
outputs = model.generate(**input_features, max_length=128)
tex=tokenizer.batch_decode(outputs[0])
print(tex)
#['我是一个AI语言模型,我可以回答各种问题,包括但不限于:天气、新闻、历史、文化、科学、教育、娱乐等。请问您有什么需要了解的吗?']
相关文章:
paddlenlp cpu windows 下测试gpt
paddlenlp 安装python3.11版本 conda create -n python311 python3.11 激活python conda activate python311 安装paddlepaddle conda install paddlepaddle3.0.0b0 -c paddle pip install paddlenlp3.0.0b0 -U -i https://pypi.tuna.tsinghua.edu.cn/simple windows下…...
uboot的功能
uboot裸机程序,uboot的核心功能是启动内核 uboot启动流程 XIP设备: 1、硬件初始化 2、读flash上面的内核,拷贝进内存 3、启动内核 非XIP设备 1、BROM程序拷贝uboot到RAM 2、执行uboot 3、硬件初始化 4、读flash上面的内核,拷贝进…...
java导出word实现
参考:Poi-tl Documentation...
Flink 提交作业的方式
首先我进行了flink单机部署,个人建议不管是学习还是开发尽量不使用 然后开始了flink自带集群部署,部署在三台服务器上,资源管理由flink集群自己管理,然后为了解决集群的单点故障问题,使用zookeeper监听事件࿰…...
JVM系列 | 垃圾收集算法
JVM系列 | 垃圾收集算法 文章目录 前言如何判断对象已"死"?引用计数法可达性分析算法可达性分析2.0版 | 引用的增强对象的消亡过程回收方法区主要回收目标:回收操作 垃圾收集算法分代收集理论 与 跨代引用假说分代收集理论跨带引用假说 垃圾收…...
深入理解Spring Boot中的事件驱动架构
深入理解Spring Boot中的事件驱动架构 大家好,我是微赚淘客系统3.0的小编,也是冬天不穿秋裤,天冷也要风度的程序猿! 1. 引言 事件驱动架构在现代软件开发中越来越受欢迎,它能够提高系统的松耦合性和可扩展性。Sprin…...
Moldflow安装包下载:附网盘地址+详细教程步骤
如大家所了解的,Autodesk Moldflow仿真软件具有注塑成型仿真工具,能够帮助您验证和优化塑料零件、注塑模具和注塑成型流程。目前常用的版本有Moldflow 2019和Moldflow2023。 还没有获取Moldflow软件安装包资源的小伙伴,可以用百度云盘保存或下…...
2024辽宁省数学建模B题【钢铁产品质量优化】思路详解
2024 辽宁省大学数学建模竞赛试题 B 题 钢铁产品质量优化 由于连续退火工序中各阶段的工艺参数之间存在耦合性(加热炉的温度设定会影响后续均热与冷却温度的设定,以及带钢穿行速度),导致难以建立该工序的机理模型,从而…...
C++基础入门(上)
个人主页:C忠实粉丝 欢迎 点赞👍 收藏✨ 留言✉ 加关注💓本文由 C忠实粉丝 原创 C基础入门(上) 收录于专栏【C语法基础】 本专栏旨在分享学习C的一点学习笔记,欢迎大家在评论区交流讨论💌 目录 1. C发展历史 2. C版本…...
基于深度学习的情感分析
基于深度学习的情感分析是一种利用深度学习技术从文本数据中提取情感信息,判断文本的情感倾向(如正面、负面或中性)的方法。这项技术在市场营销、客户服务、社交媒体分析、产品评价和政治分析等领域有广泛应用。以下是对这一领域的系统介绍&a…...
mybatis 延迟加载
MyBatis的延迟加载(Lazy Loading)是一种优化技术,用于在需要时才加载关联对象或集合,从而提高性能和效率。以下是对MyBatis延迟加载的详细介绍: 延迟加载的基本概念 延迟加载是指在第一次访问对象的属性时才加载该对象…...
使用QT5.14.2开发族谱管理软件过程记录
目标缘由:出生在农村、学习了电脑技术,总有一个想法就是将老家传承下来的族谱录入电脑中,方便快速查询和长期保存。开始入手时候发现还挺有难度。 难点如下: 过去族谱纸质版书籍是民国时候印刷的、很多字都是繁体字、还有好些字…...
【QT】布局管理器
布局管理器 布局管理器1. 垂直布局2. 水平布局3. 网格布局4. 表单布局5. Spacer 布局管理器 之前使⽤ Qt 在界⾯上创建的控件, 都是通过 “绝对定位” 的⽅式来设定的;也就是每个控件所在的位置, 都需要计算坐标, 最终通过 setGeometry 或者 move ⽅式摆放过去。 …...
兼容问题---ios底部的安全距离css设置
在H5上适配安全区域:采用viewportenvconstant方案。 具体操作如下: 1. 需要将viewport设置为cover,env和constant才能生效。设置代码如下: <meta name"viewport" content"widthdevice-width,initial-scale1.…...
python JSON Lines (JSONL)的保存和读取;jsonl的数据保存和读取,大模型prompt文件保存常用格式
1. JSON Lines (JSONL)文件保存 将一个包含多个字典的列表保存为 JSON Lines (JSONL) 格式的文件,每个字典对应一个 JSONL 文件中的一行。以下是如何实现这一操作的 Python 代码 import json# 定义包含字典的列表 data [{"id": 1, "name": &qu…...
Spring Boot中@Async注解的使用及原理 + 常见问题及解决方案
😄 19年之后由于某些原因断更了三年,23年重新扬帆起航,推出更多优质博文,希望大家多多支持~ 🌷 古之立大事者,不惟有超世之才,亦必有坚忍不拔之志 🎐 个人CSND主页——Mi…...
ubuntu基于cmakelist的Qt工程,如何将图片打包进二进制程序
qt界面使用的图片打包进入二进制可执行程序,可以避免发布的软件,因为路径问题无法加载图片的问题。 以下步骤参考自百度AI. 步骤如下: 1.创建一个新的Qt资源文件(.qrc文件) 2.在*.qrc文件中添加图片路径 qrc文件使用…...
Spring的启动流程refresh方法、配置类解析流程@Component、@Configuration、@Import、@Bean
Spring的启动流程概述: 核心方法: refresh方法,作用就是实例化spring容器中的所有单例。 3步: 生成BeanFactory容器(有beanDefinition类信息和bean对象实例)生成BeanDefinition类信息生成bean对象实例 需…...
运算放大器(2)
(1)反向放大器 Vout(-R2/R1)*Vi 图一运放的同向端接地0V,反向端和同向端虚短,所以也是0V 反向输入端输入电阻很高,虚断,几乎没有电流注入和流出,那么R1和R2相当于是串联的,流过一个…...
智能优化算法之模拟退火算法SA
发展历史和算法思想 模拟退火算法(Simulated Annealing, SA)是一种基于热力学原理的随机优化算法,最早由 S. Kirkpatrick, C. D. Gelatt 和 M. P. Vecchi 于 1983 年提出。算法的灵感来自于固体物理学中的退火过程:通过加热和缓慢…...
CTF show Web 红包题第六弹
提示 1.不是SQL注入 2.需要找关键源码 思路 进入页面发现是一个登录框,很难让人不联想到SQL注入,但提示都说了不是SQL注入,所以就不往这方面想了 先查看一下网页源码,发现一段JavaScript代码,有一个关键类ctfs…...
C++:std::is_convertible
C++标志库中提供is_convertible,可以测试一种类型是否可以转换为另一只类型: template <class From, class To> struct is_convertible; 使用举例: #include <iostream> #include <string>using namespace std;struct A { }; struct B : A { };int main…...
R语言AI模型部署方案:精准离线运行详解
R语言AI模型部署方案:精准离线运行详解 一、项目概述 本文将构建一个完整的R语言AI部署解决方案,实现鸢尾花分类模型的训练、保存、离线部署和预测功能。核心特点: 100%离线运行能力自包含环境依赖生产级错误处理跨平台兼容性模型版本管理# 文件结构说明 Iris_AI_Deployme…...
FFmpeg 低延迟同屏方案
引言 在实时互动需求激增的当下,无论是在线教育中的师生同屏演示、远程办公的屏幕共享协作,还是游戏直播的画面实时传输,低延迟同屏已成为保障用户体验的核心指标。FFmpeg 作为一款功能强大的多媒体框架,凭借其灵活的编解码、数据…...
iPhone密码忘记了办?iPhoneUnlocker,iPhone解锁工具Aiseesoft iPhone Unlocker 高级注册版分享
平时用 iPhone 的时候,难免会碰到解锁的麻烦事。比如密码忘了、人脸识别 / 指纹识别突然不灵,或者买了二手 iPhone 却被原来的 iCloud 账号锁住,这时候就需要靠谱的解锁工具来帮忙了。Aiseesoft iPhone Unlocker 就是专门解决这些问题的软件&…...
定时器任务——若依源码分析
分析util包下面的工具类schedule utils: ScheduleUtils 是若依中用于与 Quartz 框架交互的工具类,封装了定时任务的 创建、更新、暂停、删除等核心逻辑。 createScheduleJob createScheduleJob 用于将任务注册到 Quartz,先构建任务的 JobD…...
【CSS position 属性】static、relative、fixed、absolute 、sticky详细介绍,多层嵌套定位示例
文章目录 ★ position 的五种类型及基本用法 ★ 一、position 属性概述 二、position 的五种类型详解(初学者版) 1. static(默认值) 2. relative(相对定位) 3. absolute(绝对定位) 4. fixed(固定定位) 5. sticky(粘性定位) 三、定位元素的层级关系(z-i…...
土地利用/土地覆盖遥感解译与基于CLUE模型未来变化情景预测;从基础到高级,涵盖ArcGIS数据处理、ENVI遥感解译与CLUE模型情景模拟等
🔍 土地利用/土地覆盖数据是生态、环境和气象等诸多领域模型的关键输入参数。通过遥感影像解译技术,可以精准获取历史或当前任何一个区域的土地利用/土地覆盖情况。这些数据不仅能够用于评估区域生态环境的变化趋势,还能有效评价重大生态工程…...
【HTTP三个基础问题】
面试官您好!HTTP是超文本传输协议,是互联网上客户端和服务器之间传输超文本数据(比如文字、图片、音频、视频等)的核心协议,当前互联网应用最广泛的版本是HTTP1.1,它基于经典的C/S模型,也就是客…...
selenium学习实战【Python爬虫】
selenium学习实战【Python爬虫】 文章目录 selenium学习实战【Python爬虫】一、声明二、学习目标三、安装依赖3.1 安装selenium库3.2 安装浏览器驱动3.2.1 查看Edge版本3.2.2 驱动安装 四、代码讲解4.1 配置浏览器4.2 加载更多4.3 寻找内容4.4 完整代码 五、报告文件爬取5.1 提…...
