当前位置: 首页 > news >正文

深度学习和NLP中的注意力和记忆

深度学习和NLP中的注意力和记忆

在这里插入图片描述

文章目录

  • 一、说明
  • 二、注意力解决了什么问题?#
  • 三、关注的代价#
  • 四、机器翻译之外的关注#
  • 五、注意力=(模糊)记忆?#

一、说明

   深度学习的最新趋势是注意力机制。在一次采访中,现任 OpenAI 研究总监的 Ilya Sutskever 提到,注意力机制是最令人兴奋的进步之一,而且它们将继续存在。这听起来很令人兴奋。但什么是注意力机制?

   神经网络中的注意力机制(非常)松散地基于人类中的视觉注意力机制。人类的视觉注意力得到了很好的研究,虽然存在不同的模型,但它们本质上都归结为能够以“高分辨率”聚焦在图像的某个区域,同时以“低分辨率”感知周围的图像,然后随着时间的推移调整焦点。

   神经网络中的注意力有着悠久的历史,特别是在图像识别方面。示例包括学习将中央凹瞥见与三阶玻尔兹曼机相结合,或使用用于图像跟踪的深度架构学习参加地点。但直到最近,注意力机制才进入通常用于NLP的递归神经网络架构(并且越来越多地用于视觉)。这就是我们将在这篇文章中重点介绍的内容。

二、注意力解决了什么问题?#

   为了理解注意力可以为我们做什么,让我们以神经机器翻译(NMT)为例。传统的机器翻译系统通常依赖于基于文本统计属性的复杂特征工程。简而言之,这些系统很复杂,构建它们需要大量的工程工作。神经机器翻译系统的工作方式略有不同。在 NMT 中,我们将句子的含义映射到固定长度的向量表示中,然后基于该向量生成翻译。通过不依赖 n-gram 计数之类的东西,而是尝试捕捉文本的更高层次的含义,NMT 系统比许多其他方法更好地泛化到新句子。也许更重要的是,NTM 系统更容易构建和训练,并且不需要任何手动特征工程。事实上,Tensorflow 中的简单实现只不过是几百行代码。

   大多数 NMT 系统的工作原理是使用递归神经网络将源句子(例如德语句子)编码为向量,然后根据该向量解码英语句子,也使用 RNN。
在这里插入图片描述

RNN for Machine Translation
   在上图中,“Echt”、“Dicke”和“Kiste”单词被输入编码器,在特殊信号(未显示)之后,解码器开始生成翻译的句子。解码器不断生成单词,直到生成特殊的句子结尾标记。在这里,ℎ向量表示编码器的内部状态。

   如果你仔细观察,你会发现解码器应该只根据最后的隐藏状态生成翻译 h 3 ℎ_3 h3 从编码器。这 h 3 ℎ_3 h3 vector 必须对我们需要了解的有关源句子的所有内容进行编码。它必须充分体现其意义。用更专业的术语来说,该向量是一个句子嵌入。事实上,如果你使用PCA或t-SNE在低维空间中绘制不同句子的嵌入进行降维,你可以看到语义上相似的短语最终彼此接近。这真是太神奇了。

   尽管如此,假设我们可以将有关一个可能很长的句子的所有信息编码到一个向量中,然后让解码器仅基于此产生良好的翻译,这似乎有些不合理。假设您的源句子有 50 个单词长。英文翻译的第一个单词可能与源句子的第一个单词高度相关。但这意味着解码器必须考虑 50 步前的信息,并且该信息需要以某种方式编码到向量中。众所周知,递归神经网络在处理这种长程依赖关系方面存在问题。从理论上讲,像 LSTM 这样的架构应该能够处理这个问题,但在实践中,远程依赖关系仍然存在问题。例如,研究人员发现,反转源序列(将其向后馈送到编码器)会产生更好的结果,因为它缩短了从解码器到编码器相关部分的路径。同样,两次输入序列似乎也有助于网络更好地记忆事物。

   我认为颠倒句子的方法是一种“黑客”。它使事情在实践中更好地工作,但这不是一个有原则的解决方案。大多数翻译基准都是在法语和德语等语言上完成的,这些语言与英语非常相似(甚至中文的词序也与英语非常相似)。但是在某些语言(如日语)中,句子的最后一个单词可以高度预测英语翻译中的第一个单词。在这种情况下,反转输入会使情况变得更糟。那么,还有什么替代方案呢?注意力机制。

   使用注意力机制,我们不再尝试将完整的源句子编码为固定长度的向量。相反,我们允许解码器在输出生成的每个步骤中“关注”源句子的不同部分。重要的是,我们让模型根据输入的句子以及到目前为止产生的内容来学习要注意什么。因此,在非常一致的语言(如英语和德语)中,解码器可能会选择按顺序处理事情。在生成第一个英语单词时注意第一个单词,依此类推。这就是在神经机器翻译中通过联合学习对齐和翻译所做的,如下所示:
在这里插入图片描述

NMT Attention
   在这里,y的是我们翻译的单词,由解码器生成,而x是我们的源句词。上图使用双向循环网络,但这并不重要,您可以忽略相反的方向。重要的部分是每个解码器输出字 y t y_t yt 现在取决于所有输入状态的加权组合,而不仅仅是最后一个状态。这里的"a"表示的权重定义了每个输出应考虑多少每个输入状态。所以,如果 a 3 , 2 a_{3,2} a3,2 是一个很大的数字,这意味着解码器在生成目标句子的第三个单词时会非常注意源句子中的第二个状态。这里的a通常归一化为总和 1(因此它们是输入状态的分布)。

   注意力的一大优势是,它使我们能够解释和可视化模型正在做什么。例如,通过可视化注意力权重矩阵a,当一个句子被翻译时,我们可以理解模型是如何翻译的:
在这里插入图片描述

NMT Attention Matrix
   在这里,我们看到,在从法语翻译成英语时,网络会按顺序处理每个输入状态,但有时它会在生成输出时同时处理两个单词,例如将“la Syrie”翻译成“Syria”。

三、关注的代价#

   如果我们再仔细观察一下注意力的方程式,我们就会发现注意力是有代价的。我们需要为输入和输出单词的每个组合计算一个注意力值。如果您有一个 50 个单词的输入序列并生成一个 50 个单词的输出序列,则该序列将是 2500 个注意力值。这还不错,但是如果你进行字符级计算并处理由数百个标记组成的序列,上述注意力机制可能会变得非常昂贵。

   实际上,这是相当违反直觉的。人类的注意力应该可以节省计算资源。通过专注于一件事,我们可以忽略许多其他事情。但这并不是我们在上面的模型中真正要做的。在决定关注什么之前,我们基本上是在详细研究所有内容。直观地说,这相当于输出一个翻译的单词,然后回溯你对文本的所有内部记忆,以决定接下来要生成哪个单词。这似乎是一种浪费,根本不是人类正在做的事情。事实上,它更像是内存访问,而不是注意力,在我看来,这有点用词不当(更多内容见下文)。尽管如此,这并没有阻止注意力机制变得非常流行,并在许多任务中表现出色。

   另一种注意力方法是使用强化学习来预测要关注的大致位置。这听起来更像是人类的注意力,这就是视觉注意力的循环模型中所做的。

四、机器翻译之外的关注#

   到目前为止,我们已经研究了对机器翻译的关注。但是,上述相同的注意力机制可以应用于任何循环模型。因此,让我们再看几个例子。

   在“展示、参与和讲述”中,作者将注意力机制应用于生成图像描述的问题。他们使用卷积神经网络来“编码”图像,并使用具有注意力机制的递归神经网络来生成描述。通过可视化注意力权重(就像在翻译示例中一样),我们解释模型在生成单词时正在查看的内容:
在这里插入图片描述

Show, Attend and Tell Attention Visualization
   在《语法作为外语》一书中,作者使用带有注意力机制的递归神经网络来生成句子解析树。可视化的注意力矩阵可以深入了解网络如何生成这些树:
在这里插入图片描述

Screen Shot 2015-12-30 at 1.49.19 PM
   在《教机器阅读和理解》一书中,作者使用RNN来阅读文本,阅读(合成生成的)问题,然后得出答案。通过可视化注意力矩阵,我们可以看到网络在试图找到问题的答案时“看”在哪里:
在这里插入图片描述

Teaching Machines to Read And Comprehend Attention

五、注意力=(模糊)记忆?#

   注意力机制解决的基本问题是,它允许网络回溯输入序列,而不是强迫它将所有信息编码为一个固定长度的向量。正如我上面提到的,我认为这种关注有点用词不当。换一种解释,注意力机制只是让网络访问其内部存储器,这是编码器的隐藏状态。在这种解释中,网络不是选择“参加”什么,而是选择从内存中检索什么。与典型的内存不同,这里的内存访问机制是软的,这意味着网络检索所有内存位置的加权组合,而不是从单个离散位置检索值。使内存访问软化的好处是,我们可以使用反向传播轻松地端到端地训练网络(尽管有一些非模糊方法使用采样方法而不是反向传播来计算梯度)。

   记忆机制本身的历史要长得多。标准递归神经网络的隐藏状态本身就是一种内部存储器。RNN遭受梯度消失问题的困扰,这使它们无法学习长程依赖关系。LSTM 通过使用允许显式内存删除和更新的门控机制对此进行了改进。

   现在,更复杂的内存结构的趋势仍在继续。端到端内存网络允许网络在进行输出之前多次读取相同的输入序列,并在每个步骤中更新内存内容。例如,通过对输入故事进行多个推理步骤来回答问题。然而,当网络参数权重以某种方式绑定时,端到端记忆网络中的内存机制与这里介绍的注意力机制相同,只是它在内存上进行了多次跳跃(因为它试图整合来自多个句子的信息)。

   神经图灵机使用类似形式的内存机制,但具有更复杂的寻址类型,即使用基于内容的寻址(如此处)和基于位置的寻址,允许网络学习寻址模式以执行简单的计算机程序,如排序算法。

   在未来,我们很可能会看到记忆和注意力机制之间更清晰的区别,也许会沿着强化学习神经图灵机的路线,它试图学习访问模式来处理外部接口。

相关文章:

深度学习和NLP中的注意力和记忆

深度学习和NLP中的注意力和记忆 文章目录 一、说明二、注意力解决了什么问题?#三、关注的代价#四、机器翻译之外的关注#五、注意力(模糊)记忆?# 一、说明 深度学习的最新趋势是注意力机制。在一次采访中,现任 OpenAI 研…...

自用的C++20协程学习资料

C20的一个重要更新就是加入了协程。 在网上找了很多学习资料,看了之后还是不明白。 最后找到下面这些资料总算是讲得比较明白,大家可以按照顺序阅读: 渡劫 C 协程(1):C 协程概览C20协程原理和应用...

【C++】优先级队列(底层代码解释)

一. 定义 优先级队列是一个容器适配器,他可以根据不同的需求采用不同的容器来实现这个数据结构,优先级队列采用了堆的数据结构,默认使用vector作为容器,且采用大堆的结构进行存储数据。 (1)在第一个构造函数…...

华为模拟器防火墙配置实验(二)

一.实验拓扑 二.实验要求 1,DMZ区内的服务器,办公区仅能在办公时间内(9:00 - 18:00)可以访问,生产区的设备全天可以访问. 2,生产区不允许访问互联网,办公区和游客区允许…...

group 与查询字段

需求 每周周一,统计菜单在过去一周,点击次数,和点击人数(同一个人访问多次按一次计算) 表及数据 日志表 CREATE TABLE t_data_log ( id varchar(50) NOT NULL COMMENT 主键id, operation_object varchar(500) DE…...

PlantUML 教程:绘制时序图

绘制时序图是 PlantUML 的一个强大功能,下面是详细的 PlantUML 时序图教程,帮助你理解如何使用它来创建清晰的时序图。 基本概念 时序图(Sequence Diagram)用于展示对象之间的交互以及它们之间的消息传递顺序。它主要由以下元素…...

自定义ViewGroup-流式布局FlowLayout(重点:测量和布局)

效果 child按行显示,显示不下就换行。 分析 继承ViewGrouponDraw()不重写,使用ViewGroup的测量-重点 (测量child、测量自己)布局-重点 (布局child) 知识点 执行顺序 构造函数 -> onMeasure() -> …...

C++的入门基础(二)

目录 引用的概念和定义引用的特性引用的使用const引用指针和引用的关系引用的实际作用inlinenullptr 引用的概念和定义 在语法上引用是给一个变量取别名,和这个变量共用同一块空间,并不会给引用开一块空间。 取别名就是一块空间有多个名字 类型& …...

显示产业如何突破芯片短板

尽管中国在显示IC领域面临一定的不足,但新技术的不断涌现为中国企业提供了重要的发展机遇。随着手机、平板电脑和液晶电视对显示屏性能要求的不断提高,显示驱动IC也必须相应地发展,向更高分辨率、更大尺寸和更低功耗的方向迈进。例如&#xf…...

STM32HAL库+ESP8266+cJSON+微信小程序_连接华为云物联网平台

STM32HAL库ESP8266cJSON微信小程序_连接华为云物联网平台 实验使用资源:正点原子F407 USART1:PA9P、A10(串口打印调试) USART3:PB10、PB11(WiFi模块) DHT11:PG9(采集数据…...

debian或Ubuntu中开启ssh允许root远程ssh登录的方法

debian或Ubuntu中开启ssh允许root远程ssh登录的方法 前因: 因开发需要,需要设置开发板的ssh远程连接。 操作步骤如下: 安装openssh-server sudo apt install openssh-server设置root用户密码: sudo passwd root允许root用户…...

C++《日期》实现

C《日期》实现 头文件实现文件 头文件 在该文件中是为了声明函数和定义类成员 using namespace std; class Date {friend ostream& operator<<(ostream& out, const Date& d);//友元friend istream& operator>>(istream& cin, Date& d);//…...

【面试题】MySQL(第三篇)

目录 1. MySQL中如何处理死锁&#xff1f; 2. MySQL中的主从复制是如何实现的&#xff1f; 3. MySQL中的慢查询日志是什么&#xff1f;如何使用它来优化性能&#xff1f; 4.存储过程 一、定义与基本概念 二、特点与优势 三、类型与分类 四、创建与执行 五、示例 六、总…...

tensorflow之欠拟合与过拟合,正则化缓解

过拟合泛化性弱 欠拟合解决方法&#xff1a; 增加输入特征项 增加网络参数 减少正则化参数 过拟合的解决方法&#xff1a; 数据清洗 增大训练集 采用正则化 增大正则化参数 正则化缓解过拟合 正则化在损失函数中引入模型复杂度指标&#xff0c;利用给w增加权重&#xff0c;…...

vue实现a-model弹窗拖拽移动

通过自定义拖拽指令实现 实现效果 拖动顶部&#xff0c;可对整个弹窗实施拖拽&#xff08;如果需要拖动底部、中间内容实现拖拽&#xff0c;把下面的ant-modal-header对应改掉就行&#xff09; 代码实现 编写自定义指令 新建一个ts / js文件&#xff0c;用ts举例 import V…...

速盾:如何加强网站的安全性

随着互联网的快速发展&#xff0c;网站的安全性变得越来越重要。CDN&#xff08;内容分发网络&#xff09;是一种常见的网络加速服务&#xff0c;它可以将网站的静态内容分发到全球各地的服务器上&#xff0c;以提供更快的访问速度。然而&#xff0c;CDN 也存在一些安全风险&am…...

【PyTorch单点知识】自动求导机制的原理与实践

文章目录 0. 前言1. 自动求导的基本原理2. PyTorch中的自动求导2.1 创建计算图2.2 反向传播2.3 反向传播详解2.4 梯度清零2.5 定制自动求导 3. 代码实例&#xff1a;线性回归的自动求导4. 结论 0. 前言 按照国际惯例&#xff0c;首先声明&#xff1a;本文只是我自己学习的理解&…...

【Java】搜索引擎设计:信息搜索怎么避免大海捞针?

一、内容分析 我们准备开发一个针对全网内容的搜索引擎&#xff0c;产品名称为“Bingoo”。 Bingoo的主要技术挑战包括&#xff1a; 针对爬虫获取的海量数据&#xff0c;如何高效地进行数据管理&#xff1b;当用户输入搜索词的时候&#xff0c;如何快速查找包含搜索词的网页…...

【Python】ModuleNotFoundError: No module named ‘distutils.util‘ bug fix

【Python】ModuleNotFoundError: No module named distutils.util bug fix 1. error like this2. how to fix why this error occured , because i remove the origin version python of ubuntu of 20.04. then the system trapped in tty1 , you must make sure the laptop li…...

痉挛性斜颈对生活有哪些影响?

痉挛性斜颈&#xff0c;这个名字听起来可能并不熟悉&#xff0c;但它实际上是一种神经系统疾病&#xff0c;影响着全球数百万人的生活质量。它以一种无法控制的方式&#xff0c;使患者的颈部肌肉发生不自主的收缩&#xff0c;导致头部姿势异常。对于患者来说&#xff0c;痉挛性…...

前端倒计时误差!

提示:记录工作中遇到的需求及解决办法 文章目录 前言一、误差从何而来?二、五大解决方案1. 动态校准法(基础版)2. Web Worker 计时3. 服务器时间同步4. Performance API 高精度计时5. 页面可见性API优化三、生产环境最佳实践四、终极解决方案架构前言 前几天听说公司某个项…...

遍历 Map 类型集合的方法汇总

1 方法一 先用方法 keySet() 获取集合中的所有键。再通过 gey(key) 方法用对应键获取值 import java.util.HashMap; import java.util.Set;public class Test {public static void main(String[] args) {HashMap hashMap new HashMap();hashMap.put("语文",99);has…...

Qwen3-Embedding-0.6B深度解析:多语言语义检索的轻量级利器

第一章 引言&#xff1a;语义表示的新时代挑战与Qwen3的破局之路 1.1 文本嵌入的核心价值与技术演进 在人工智能领域&#xff0c;文本嵌入技术如同连接自然语言与机器理解的“神经突触”——它将人类语言转化为计算机可计算的语义向量&#xff0c;支撑着搜索引擎、推荐系统、…...

PL0语法,分析器实现!

简介 PL/0 是一种简单的编程语言,通常用于教学编译原理。它的语法结构清晰,功能包括常量定义、变量声明、过程(子程序)定义以及基本的控制结构(如条件语句和循环语句)。 PL/0 语法规范 PL/0 是一种教学用的小型编程语言,由 Niklaus Wirth 设计,用于展示编译原理的核…...

GruntJS-前端自动化任务运行器从入门到实战

Grunt 完全指南&#xff1a;从入门到实战 一、Grunt 是什么&#xff1f; Grunt是一个基于 Node.js 的前端自动化任务运行器&#xff0c;主要用于自动化执行项目开发中重复性高的任务&#xff0c;例如文件压缩、代码编译、语法检查、单元测试、文件合并等。通过配置简洁的任务…...

招商蛇口 | 执笔CID,启幕低密生活新境

作为中国城市生长的力量&#xff0c;招商蛇口以“美好生活承载者”为使命&#xff0c;深耕全球111座城市&#xff0c;以央企担当匠造时代理想人居。从深圳湾的开拓基因到西安高新CID的战略落子&#xff0c;招商蛇口始终与城市发展同频共振&#xff0c;以建筑诠释对土地与生活的…...

基于IDIG-GAN的小样本电机轴承故障诊断

目录 🔍 核心问题 一、IDIG-GAN模型原理 1. 整体架构 2. 核心创新点 (1) ​梯度归一化(Gradient Normalization)​​ (2) ​判别器梯度间隙正则化(Discriminator Gradient Gap Regularization)​​ (3) ​自注意力机制(Self-Attention)​​ 3. 完整损失函数 二…...

【网络安全】开源系统getshell漏洞挖掘

审计过程&#xff1a; 在入口文件admin/index.php中&#xff1a; 用户可以通过m,c,a等参数控制加载的文件和方法&#xff0c;在app/system/entrance.php中存在重点代码&#xff1a; 当M_TYPE system并且M_MODULE include时&#xff0c;会设置常量PATH_OWN_FILE为PATH_APP.M_T…...

Ubuntu Cursor升级成v1.0

0. 当前版本低 使用当前 Cursor v0.50时 GitHub Copilot Chat 打不开&#xff0c;快捷键也不好用&#xff0c;当看到 Cursor 升级后&#xff0c;还是蛮高兴的 1. 下载 Cursor 下载地址&#xff1a;https://www.cursor.com/cn/downloads 点击下载 Linux (x64) &#xff0c;…...

Kubernetes 节点自动伸缩(Cluster Autoscaler)原理与实践

在 Kubernetes 集群中&#xff0c;如何在保障应用高可用的同时有效地管理资源&#xff0c;一直是运维人员和开发者关注的重点。随着微服务架构的普及&#xff0c;集群内各个服务的负载波动日趋明显&#xff0c;传统的手动扩缩容方式已无法满足实时性和弹性需求。 Cluster Auto…...