当前位置: 首页 > news >正文

【蓄势·致远】 同为科技(TOWE)2024年年中会议

2024年7月2日-8日,同为科技(TOWE)召开2024年年中工作会议。会议回顾上半年总体工作情况,分析研判发展形势,规划部署下半年工作。

为期一周的工作会议,由同为科技(TOWE)创始人、董事长周慧生先生主持,行政管理部、财务管理部、网络营销中心、新渠道发展中心、行业应用中心、产品交付中心等各部核心成员出席会议。共话企业战略发展新形势下,企业在行业领域维稳发展,创新破局,持续增进,达成行业驱动社会民生建设。

本次会议共分四个阶段,旨在实现企业突破创新。在当今经济环境下,紧随时代发展,响应市场日新月异的变革与需求,为企业蓄能,优化核心发展方向、管理策略,高质量发展实现产业领军企业的目标。

STAGE 1   

7月2日-5日

周慧生先生逐依听取各职能中心核心成员汇报的上半年整体工作进度。结合当前经济环境与行业发展的动向,分析半年度各部具体工作并提出指导性方针,明确了各项工作与管理,高效、有序的阶段性成果。同时针对各部工作存在的问题与困难,提出整改措施和提议。

在企业发展过程中,各部的核心职能优势需要高质量发挥,以精细化管理对接内部需求,用密切协调对接发展规划策略,实现企业快速运作和高质量发展。

STAGE 2

7月7日

在周慧生先生的主持下,同为科技(TOWE)全体部门核心成员在天津基地进行2024年阶段性企业战略发展规划的面对面对话。

江西同为科技(TOWE)与北京总部的各部负责人总结分享半年的主要工作成果,经营管理工作经验。剖析今年的行业发展环境,市场经济环境的整体趋势,对管理与规划进行深入的思考与探讨。

经过12个小时的深入交流,各部在工作规划,内部建设、如何通过创新、优化产品和服务,以及提升团队效率等方向。通过“点”对“面”,"面“对“核心”的经营战略凝聚共识。

在团队和企业面临各种的挑战的当下,企业内部团队协同合作更为重要,创新发展和解决行业与客户的需求、为客户高价值的服务为对话核心,实现企业稳步增长的规划。

此阶段周慧生先生对会议进行总结

1、危机时刻

在当前环境下企业的发展要有危机意识,在不断自我完善中去创新、去改变、去适应和抓住机会,推动企业更长远的发展。

2、蛰伏

在面临的危机与困难中,不断自我深入思考,挖掘每个团队的优势,不断自我完善,蓄势待发。

3、拥抱变化

当今的科技环境日新月异,不断的自我认知,自我学习,通过学术知识、科技信息来满足内部的升级需求,实现企业、个人全面顺应时代、社会发展变化的环境。

4、轻松上阵

用长远的规划和战略目光,不断自我调整适应企业的发展和时代的需求,以有目标、有理想、有信心的饱满的状态,实现个人价值、部门价值、企业价值、社会价值。

STAGE 3

7月8日    A.M.

同为科技(TOWE)产品研发与交付中心、行业应用中心等领导代表参观欧伏电气,对企业动态发展与合作进行深入的交流和研讨。

STAGE 4

7月8日    P.M.

同为科技(北京同为科技、江西同为科技)的两地员工,通过视频连接,召开全体员工大会。由周慧生先生主持进行2024年年中工作汇报与总结。

周慧生先生对公司2024年下半年的公司战略进行详细规划,对各部的发展规划与职能进行具体要求。持续驱动提升效率,去除低效环节。达成产品、服务、组织、管理更完善的架构,推进同为科技的品牌化、专业化、平台化、全球化。

在危机时刻、蛰伏蓄势、拥抱变化,适应时代,赋能发展,释放潜力。拥抱不确定性、接受并利用变化作为成长的机会。持续奋斗,达成目标。

同为科技在当下与未来,拥抱时代,通过不断创新与优化,将积极地提升服务价值、企业价值、社会价值,助力赋能电气行业增量发展,为中国经济发展贡献力量。

相关文章:

【蓄势·致远】 同为科技(TOWE)2024年年中会议

2024年7月2日-8日,同为科技(TOWE)召开2024年年中工作会议。会议回顾上半年总体工作情况,分析研判发展形势,规划部署下半年工作。 为期一周的工作会议,由同为科技(TOWE)创始人、董事长…...

通过git将文件push到github 远程仓库

1.先git clone 代码地址 git clone htttp://github.com/用户名/test.git 2. 添加文件 例如:touch 1.txt 3.将文件添加到暂存区 git add 1.txt 4.提交 git commit -m "commit 1.txt" 5.与远程仓库建立关联 git remote add 远程仓库名 远程仓库…...

如何判断服务器是否被攻击

如何判断服务器是否被攻击 一、异常流量模式 一种判断服务器是否遭到攻击的方法是监控网络流量。异常的流量模式,例如流量突然剧增或减少,都可能是攻击的迹象。通常,大量的入站流量表明分布式拒绝服务(DDoS)攻击的可能…...

泽众一站式性能测试平台P-One监控指标的意义

在当今数字化和信息化高度发展的时代,企业把保障系统稳定运行、优化业务流程和提升用户体验摆在首要位置。然而,在现如今复杂的分布式系统中,各个组件和服务之间的交互频繁且紧密,当系统出现性能瓶颈时,传统的监测手段…...

前端Canvas入门——一些注意事项

创建渐变的三种方法: createLinearGradient() - 线性渐变 createRadialGradient() - 径向渐变(放射性渐变) createConicGradient() - 锥形渐变 这三种的核心观点都是: 创建一个gradient对象,然后调用addColorStop()方法…...

移动互联安全扩展要求测评项

安全物理环境-无线接入点的位置选择 应为无线接入设备的安装选择合理位置,避免过度覆盖和电磁干扰。 无线接入设备的安装位置选择不当,易被攻击者利用,特别是攻击者会通过无线信号过度覆盖的弱点进行无线渗透攻击,因此要选择合理…...

【代码随想录】【算法训练营】【第64天】 [卡码117]软件构建 [卡码47]参加科学大会

前言 思路及算法思维,指路 代码随想录。 题目来自 卡码网。 day 64,周三,继续ding~ 题目详情 [卡码117] 软件构建 题目描述 卡码117 软件构建 解题思路 前提: 思路: 重点: 代码实现 C语言 [卡码…...

【python算法学习1】用递归和循环分别写下 fibonacci 斐波拉契数列,比较差异

问题: fibonacci 斐波拉契数列,用递归和循环的方法分别写,比较递归和循环的思路和写法的差别 最直接的思路,是写递归方法 循环方法的稍微有点绕,我觉得问题主要是出在,总结循环的通项公式更麻烦,难在数学…...

【邀请函】庭田科技邀您第五届中国国际复合材料科技大会

第五届中国国际复合材料科技大会暨第七届国际复合材料产业创新成果技术展示(ICIE7-新疆)将于7月25-27日在新疆乌鲁木齐-国际会展中心举行。上海庭田信息科技有限公司将携多款仿真模拟软件亮相本次大会,诚挚欢迎各位到场咨询了解! …...

win32:第一个窗口程序-应用程序入口点(part.6)

第一个窗口程序的最后一部分:应用程序入口函数wWinMain;这是Windows应用程序的主函数,负责初始化应用程序、注册窗口类、创建主窗口并进入消息循环处理消息。 int APIENTRY wWinMain(_In_ HINSTANCE hInstance,_In_opt_ HINSTANCE hPrevInst…...

c++ 多边形 xyz 数据 获取 中心点方法,线的中心点取中心值搞定 已解决

有需求需要对。多边形 获取中心点方法&#xff0c;绝大多数都是 puthon和java版本。立体几何学中的知识。 封装函数 point ##########::getCenterOfGravity(std::vector<point> polygon) {if (polygon.size() < 2)return point();auto Area [](point p0, point p1, p…...

ext_errno:拓展errno

类似于C库的errno机制&#xff0c;报告错误发生的原因以及所在的位置&#xff0c;通过查询来获取。...

【CUDA】 Trust基本特性介绍及性能分析

Trust简介 Thrust 是一个实现了众多基本并行算法的 C 模板库,类似于 C 的标准模板库(standard template library, STL)。该库自动包含在 CUDA 工具箱中。这是一个模板库,仅仅由一些头文件组成。在使用该库的某个功能时,包含需要的头文件即可。该库中的所有类型与函数都在命名空…...

颈肩肌筋膜炎中医治疗

颈肩肌筋膜炎&#xff0c;又称颈肩肌纤维织炎或肌肉风湿症&#xff0c;是一种涉及筋膜、肌肉、肌腱和韧带等软组织的无菌性炎症。以下将分别从症状和治疗两方面进行详细介绍。 一、颈肩肌筋膜炎的症状 颈肩肌筋膜炎的主要症状包括&#xff1a; 1、肩背部疼痛&#xff1a;患者…...

Java 通配符 在短信发送之中 通配符参数动态获取解决方案

目录 1、通配符应用场景 2、实现方案分析 2.1、可能针对不同模板中核定参数硬编码到程序之中写死 2.2、通配置模板之中动态获得对应的参数 3、通过正则表达式验证与替换参数${}参考示例 4、参考文章 1、通配符应用场景 我们在使用通配符场景&#xff0c;主要是应用于短信…...

Mybatis-Plus中LambdaQueryWrapper

基本用法 import com.baomidou.mybatisplus.core.conditions.query.LambdaQueryWrapper; // 假设有一个 User 实体类 LambdaQueryWrapper<User> queryWrapper new LambdaQueryWrapper<>(); // 添加查询条件 queryWrapper.eq(User::getName, "John&quo…...

C++ 入门05:类和对象

往期回顾&#xff1a; C 入门02&#xff1a;控制结构和循环-CSDN博客C 入门03&#xff1a;函数与作用域-CSDN博客C 入门04&#xff1a;数组与字符串-CSDN博客 一、前言 在前面文章的学习中&#xff0c;我们了解了 C 的基本结构、变量、输入输出、控制结构、循环、函数、作用域…...

4G LTE教程

整体架构 物理层&#xff08;第 1 层&#xff09; 物理层通过空中接口传输来自 MAC 传输信道的所有信息。负责 RRC 层的链路自适应 (AMC)、功率控制、小区搜索&#xff08;用于初始同步和切换目的&#xff09;和其他测量&#xff08;LTE 系统内部和系统之间&#xff09;。 介…...

C++:哈希表

哈希表概念 哈希表可以简单理解为&#xff1a;把数据转化为数组的下标&#xff0c;然后用数组的下标对应的值来表示这个数据。如果我们想要搜索这个数据&#xff0c;直接计算出这个数据的下标&#xff0c;然后就可以直接访问数组对应的位置&#xff0c;所以可以用O(1)的复杂度…...

自己动手写一个滑动验证码组件(后端为Spring Boot项目)

近期参加的项目&#xff0c;主管丢给我一个任务&#xff0c;说要支持滑动验证码。我身为50岁的软件攻城狮&#xff0c;当时正背着双手&#xff0c;好像一个受训的保安似的&#xff0c;中规中矩地参加每日站会&#xff0c;心想滑动验证码在今时今日已经是标配了&#xff0c;司空…...

内存分配函数malloc kmalloc vmalloc

内存分配函数malloc kmalloc vmalloc malloc实现步骤: 1)请求大小调整:首先,malloc 需要调整用户请求的大小,以适应内部数据结构(例如,可能需要存储额外的元数据)。通常,这包括对齐调整,确保分配的内存地址满足特定硬件要求(如对齐到8字节或16字节边界)。 2)空闲…...

调用支付宝接口响应40004 SYSTEM_ERROR问题排查

在对接支付宝API的时候&#xff0c;遇到了一些问题&#xff0c;记录一下排查过程。 Body:{"datadigital_fincloud_generalsaas_face_certify_initialize_response":{"msg":"Business Failed","code":"40004","sub_msg…...

Linux链表操作全解析

Linux C语言链表深度解析与实战技巧 一、链表基础概念与内核链表优势1.1 为什么使用链表&#xff1f;1.2 Linux 内核链表与用户态链表的区别 二、内核链表结构与宏解析常用宏/函数 三、内核链表的优点四、用户态链表示例五、双向循环链表在内核中的实现优势5.1 插入效率5.2 安全…...

Qt Http Server模块功能及架构

Qt Http Server 是 Qt 6.0 中引入的一个新模块&#xff0c;它提供了一个轻量级的 HTTP 服务器实现&#xff0c;主要用于构建基于 HTTP 的应用程序和服务。 功能介绍&#xff1a; 主要功能 HTTP服务器功能&#xff1a; 支持 HTTP/1.1 协议 简单的请求/响应处理模型 支持 GET…...

现代密码学 | 椭圆曲线密码学—附py代码

Elliptic Curve Cryptography 椭圆曲线密码学&#xff08;ECC&#xff09;是一种基于有限域上椭圆曲线数学特性的公钥加密技术。其核心原理涉及椭圆曲线的代数性质、离散对数问题以及有限域上的运算。 椭圆曲线密码学是多种数字签名算法的基础&#xff0c;例如椭圆曲线数字签…...

Pinocchio 库详解及其在足式机器人上的应用

Pinocchio 库详解及其在足式机器人上的应用 Pinocchio (Pinocchio is not only a nose) 是一个开源的 C 库&#xff0c;专门用于快速计算机器人模型的正向运动学、逆向运动学、雅可比矩阵、动力学和动力学导数。它主要关注效率和准确性&#xff0c;并提供了一个通用的框架&…...

Mysql中select查询语句的执行过程

目录 1、介绍 1.1、组件介绍 1.2、Sql执行顺序 2、执行流程 2.1. 连接与认证 2.2. 查询缓存 2.3. 语法解析&#xff08;Parser&#xff09; 2.4、执行sql 1. 预处理&#xff08;Preprocessor&#xff09; 2. 查询优化器&#xff08;Optimizer&#xff09; 3. 执行器…...

在Mathematica中实现Newton-Raphson迭代的收敛时间算法(一般三次多项式)

考察一般的三次多项式&#xff0c;以r为参数&#xff1a; p[z_, r_] : z^3 (r - 1) z - r; roots[r_] : z /. Solve[p[z, r] 0, z]&#xff1b; 此多项式的根为&#xff1a; 尽管看起来这个多项式是特殊的&#xff0c;其实一般的三次多项式都是可以通过线性变换化为这个形式…...

C#学习第29天:表达式树(Expression Trees)

目录 什么是表达式树&#xff1f; 核心概念 1.表达式树的构建 2. 表达式树与Lambda表达式 3.解析和访问表达式树 4.动态条件查询 表达式树的优势 1.动态构建查询 2.LINQ 提供程序支持&#xff1a; 3.性能优化 4.元数据处理 5.代码转换和重写 适用场景 代码复杂性…...

【JVM】Java虚拟机(二)——垃圾回收

目录 一、如何判断对象可以回收 &#xff08;一&#xff09;引用计数法 &#xff08;二&#xff09;可达性分析算法 二、垃圾回收算法 &#xff08;一&#xff09;标记清除 &#xff08;二&#xff09;标记整理 &#xff08;三&#xff09;复制 &#xff08;四&#xff…...