当前位置: 首页 > news >正文

昇思25天学习打卡营第20天 | 基于MindNLP+MusicGen生成自己的个性化音乐

基于MindNLP+MusicGen生成个性化音乐

在这里插入图片描述

实验简介

MusicGen是Meta AI提出的音乐生成模型,能够根据文本描述或音频提示生成高质量音乐。该模型基于Transformer结构,分为三个阶段:文本编码、音频token预测和音频解码。此实验将演示如何使用MindSpore和MusicGen进行音乐生成,包括环境配置、模型下载、无提示生成、文本提示生成和音频提示生成。

实验步骤

1. 环境配置

安装并配置MindSpore和相关依赖。

!pip uninstall mindspore -y
!pip install -i https://pypi.mirrors.ustc.edu.cn/simple mindspore==2.2.14
!pip install -i https://pypi.mirrors.ustc.edu.cn/simple mindnlp jieba soundfile librosa
!pip show mindspore
2. 模型下载

下载并加载MusicGen模型。

from mindnlp.transformers import MusicgenForConditionalGenerationmodel = MusicgenForConditionalGeneration.from_pretrained("facebook/musicgen-small")
3. 无提示生成

通过无提示生成方法生成音乐。

unconditional_inputs = model.get_unconditional_inputs(num_samples=1)audio_values = model.generate(**unconditional_inputs, do_sample=True, max_new_tokens=256)

保存生成的音频文件。

import scipysampling_rate = model.config.audio_encoder.sampling_rate
scipy.io.wavfile.write("musicgen_out.wav", rate=sampling_rate, data=audio_values[0, 0].asnumpy())from IPython.display import Audio
Audio(audio_values[0].asnumpy(), rate=sampling_rate)
4. 文本提示生成

通过文本提示生成音乐。

from mindnlp.transformers import AutoProcessorprocessor = AutoProcessor.from_pretrained("facebook/musicgen-small")inputs = processor(text=["80s pop track with bassy drums and synth", "90s rock song with loud guitars and heavy drums"],padding=True,return_tensors="ms",
)audio_values = model.generate(**inputs, do_sample=True, guidance_scale=3, max_new_tokens=256)

保存生成的音频文件。

scipy.io.wavfile.write("musicgen_out_text.wav", rate=sampling_rate, data=audio_values[0, 0].asnumpy())
Audio(audio_values[0].asnumpy(), rate=sampling_rate)
5. 音频提示生成

通过音频提示生成音乐。

from datasets import load_datasetprocessor = AutoProcessor.from_pretrained("facebook/musicgen-small")
dataset = load_dataset("sanchit-gandhi/gtzan", split="train", streaming=True)
sample = next(iter(dataset))["audio"]sample["array"] = sample["array"][: len(sample["array"]) // 2]inputs = processor(audio=sample["array"],sampling_rate=sample["sampling_rate"],text=["80s blues track with groovy saxophone"],padding=True,return_tensors="ms",
)audio_values = model.generate(**inputs, do_sample=True, guidance_scale=3, max_new_tokens=256)
scipy.io.wavfile.write("musicgen_out_audio.wav", rate=sampling_rate, data=audio_values[0, 0].asnumpy())
Audio(audio_values[0].asnumpy(), rate=sampling_rate)

学习心得

通过本次实验,我深刻认识到MindSpore和MusicGen在音乐生成领域的强大能力。MusicGen模型基于Transformer结构,通过三个阶段将文本或音频提示转化为高质量的音乐。环境配置和模型下载是成功运行实验的基础。在安装MindSpore和其他依赖库的过程中,我学习到如何在不同平台上进行环境配置。无提示生成、文本提示生成和音频提示生成三个环节让我体验到MusicGen模型的多样性和灵活性。通过无提示生成音乐,我了解到模型可以在没有任何提示的情况下生成独特的音乐片段。而在文本提示生成过程中,我可以根据不同的文本描述生成风格各异的音乐,感受到模型对文本提示的敏感性和生成能力。在音频提示生成中,我学会了如何利用已有的音频片段进行生成,使得生成的音乐与提示音频高度相关。

在这里插入图片描述

相关文章:

昇思25天学习打卡营第20天 | 基于MindNLP+MusicGen生成自己的个性化音乐

基于MindNLPMusicGen生成个性化音乐 实验简介 MusicGen是Meta AI提出的音乐生成模型,能够根据文本描述或音频提示生成高质量音乐。该模型基于Transformer结构,分为三个阶段:文本编码、音频token预测和音频解码。此实验将演示如何使用MindSpo…...

windows USB 设备驱动开发-USB主控制开发(一)

下面介绍主机驱动程序开发的高级概念和任务。 如果你正在编写与 Microsoft 提供的 USB 主机控制器扩展驱动程序 (Ucx01000.sys) 通信的新主机控制器驱动程序,则这部分内容适用于你。 下面是 Windows 中 USB 主机端驱动程序中显示的图表的修改版本。 此版本隐藏 USB…...

Dubbo 负载均衡(Load Balance)

在分布式系统中,负载均衡是确保系统高效稳定运行的关键技术之一。Dubbo 作为一款高性能的 RPC 框架,提供了多种负载均衡策略以满足不同场景的需求。本文将深入介绍 Dubbo 中常用的几种负载均衡策略:随机(Random)、轮询…...

ArcGIS Pro SDK (九)几何 3 点

ArcGIS Pro SDK (九)几何 3 点 文章目录 ArcGIS Pro SDK (九)几何 3 点1 构造地图点2 地图点生成器属性3 地图点的相等性4 缩放至指定点 环境:Visual Studio 2022 .NET6 ArcGIS Pro SDK 3.0 1 构造地图点 // 使用生…...

基于神经网络的分类和预测

基于神经网络的分类和预测 一、基础知识(一)引言(二)神经网络的基本概念(1)神经网络(2)神经元(3)常用的激活函数(非线性映射函数)&…...

VR头显如何低延迟播放8K的RTSP|RTMP流

技术背景 我们在做Unity平台RTSP、RTMP播放器的时候,有公司提出来这样的技术需求,希望在头显播放全景的8K RTSP|RTMP直播流,8K的数据,对头显和播放器,都提出了新的要求,我们从几个方面,探讨下V…...

2、ASPX、.NAT(环境/框架)安全

ASPX、.NAT&#xff08;环境/框架&#xff09;安全 源自小迪安全b站公开课 1、搭建组合&#xff1a; WindowsIISaspxsqlserver .NAT基于windows C开发的框架/环境 对抗Java xx.dll <> xx.jar 关键源码封装在dll文件内。 2、.NAT配置调试-信息泄露 功能点&#xf…...

在家上网IP地址是固定的吗?

在数字化时代&#xff0c;互联网已成为我们日常生活中不可或缺的一部分。无论是工作、学习还是娱乐&#xff0c;我们都离不开网络的支持。然而&#xff0c;当我们在家中接入互联网时&#xff0c;可能会产生这样一个疑问&#xff1a;在家上网IP地址是固定的吗&#xff1f;下面一…...

交换机和路由器的工作流程

1、交换机工作流程&#xff1a; 将接口中的电流识别为二进制&#xff0c;并转换成数据帧&#xff0c;交换机会记录学习该数据帧的源MAC地址&#xff0c;并将其端口关联起来记录在MAC地址表中。然后查看MAC地址表来查找目标MAC地址&#xff0c;会有一下一些情况&#xff1a; MA…...

算法笔记——LCR

一.LCR 152. 验证二叉搜索树的后序遍历序列 题目描述&#xff1a; 给你一个二叉搜索树的后续遍历序列&#xff0c;让你判断该序列是否合法。 解题思路&#xff1a; 根据二叉搜索树的特性&#xff0c;二叉树搜索的每一个结点&#xff0c;大于左子树&#xff0c;小于右子树。…...

ChatGPT对话:如何制作静态网页?

【编者按】编者在很早以前制作过静态网页&#xff0c;之后长期没有使用&#xff0c;已完全不知道最新现状了。所以&#xff0c;从制作工具开始询问ChatGPT&#xff0c;回答非常全面&#xff0c;完全可以解决初学者的问题。 编者虽然长期不制作网页&#xff0c;但一直在编程&…...

k8s(二)

五、kubernetes架构(K8S的架构也是master和node模式&#xff09; 集群里至少需要有一个master节点&#xff0c;即就是主节点。node节点可以多个。 若是多个master节点&#xff0c;worker节点和master的apiserverr进行交互时&#xff0c;就需要通过LB(load banlance&#xff09;…...

ClickHouse表引擎概述

ClickHouse表引擎概述 表引擎的功能&#xff1a; 数据的存储方式 数据的存储位置 是否可以使用索引 是否可以使用分区 是否支持数据副本 并发数据访问 ClickHouse在建表时必须指定表引擎。 表引擎主要分为四大类&#xff1a;MergeTree系列、Log系列、与其他存储/处理系…...

jenkins系列-04-jenkins参数化构建

使用maven build之前&#xff0c;先checkout 指定分支或标签&#xff1a; 拖拽调整顺序&#xff1a;shell执行在前&#xff0c;构建在后&#xff1a; gitee新建标签tag:...

Flutter框架时间线梳理

Flutter是一个开源的UI工具包&#xff0c;它用于构建高质量的原生移动应用。Flutter的版本历史如下&#xff1a; Flutter 0.1.2&#xff1a; 2018年发布&#xff0c;这是第一个正式发布的版本&#xff0c;包含了基本的框架和工具。 Flutter 1.0.0&#xff1a; 2019年发布&…...

RAG 效果提升的最后一步—— 微调LLM

如果说&#xff0c;rerank能够让RAG的效果实现百尺竿头更进一步&#xff0c;那么LLM微调应该是RAG效果提升的最后一步。 把召回的数据&#xff0c;经过粗排&#xff0c;重排序后&#xff0c;送给模型&#xff0c;由模型最后总结答案。LLM的确已经是RAG的最后一步了。 这里还是会…...

C语言 | Leetcode C语言题解之第230题二叉搜索树中第K小的元素

题目&#xff1a; 题解&#xff1a; /*** Definition for a binary tree node.* struct TreeNode {* int val;* struct TreeNode *left;* struct TreeNode *right;* };*/int search_num(struct TreeNode* root, int k, int *result, int num) {if(num k 1){retu…...

YOWOv2(yowov2)动作识别+Fastreid身份识别 详细安装与实现

首先yowov2是一款简单且实时的时空动作检测方案&#xff0c;fastreid是行人重识别&#xff08;身份识别&#xff09; yowov2介绍链接直达fastreid链接直达为时空动作检测任务设计实时框架仍然是一个挑战。YOWOv2 提出了一种新颖的实时动作检测框架&#xff0c;利用三维骨干和二…...

【微服务】Spring Cloud中如何使用Eureka

摘要 Eureka作为Netflix开源的服务发现框架&#xff0c;在Spring Cloud体系中扮演着至关重要的角色。本文详细介绍了Eureka的基本概念、工作原理以及如何在Spring Cloud中集成和使用Eureka进行服务发现和管理。通过深入分析Eureka的注册与发现机制、区域感知和自我保护等高级特…...

【Neo4j】实战 (数据库技术丛书)学习笔记

Neo4j实战 (数据库技术丛书) 第1章演示了应用Neo4j作为图形数据库对改进性能和扩展性的可能性, 也讨论了对图形建模的数据如何正好适应于Neo4j数据模型,现在到了该动 手实践的时间了。第一章 概述 Neo4j将数据作为顶点和边存储(或者用Neo4j术语,节点和关系存 储)。用户被定…...

XCTF-web-easyupload

试了试php&#xff0c;php7&#xff0c;pht&#xff0c;phtml等&#xff0c;都没有用 尝试.user.ini 抓包修改将.user.ini修改为jpg图片 在上传一个123.jpg 用蚁剑连接&#xff0c;得到flag...

springboot 百货中心供应链管理系统小程序

一、前言 随着我国经济迅速发展&#xff0c;人们对手机的需求越来越大&#xff0c;各种手机软件也都在被广泛应用&#xff0c;但是对于手机进行数据信息管理&#xff0c;对于手机的各种软件也是备受用户的喜爱&#xff0c;百货中心供应链管理系统被用户普遍使用&#xff0c;为方…...

golang循环变量捕获问题​​

在 Go 语言中&#xff0c;当在循环中启动协程&#xff08;goroutine&#xff09;时&#xff0c;如果在协程闭包中直接引用循环变量&#xff0c;可能会遇到一个常见的陷阱 - ​​循环变量捕获问题​​。让我详细解释一下&#xff1a; 问题背景 看这个代码片段&#xff1a; fo…...

基于数字孪生的水厂可视化平台建设:架构与实践

分享大纲&#xff1a; 1、数字孪生水厂可视化平台建设背景 2、数字孪生水厂可视化平台建设架构 3、数字孪生水厂可视化平台建设成效 近几年&#xff0c;数字孪生水厂的建设开展的如火如荼。作为提升水厂管理效率、优化资源的调度手段&#xff0c;基于数字孪生的水厂可视化平台的…...

反射获取方法和属性

Java反射获取方法 在Java中&#xff0c;反射&#xff08;Reflection&#xff09;是一种强大的机制&#xff0c;允许程序在运行时访问和操作类的内部属性和方法。通过反射&#xff0c;可以动态地创建对象、调用方法、改变属性值&#xff0c;这在很多Java框架中如Spring和Hiberna…...

PL0语法,分析器实现!

简介 PL/0 是一种简单的编程语言,通常用于教学编译原理。它的语法结构清晰,功能包括常量定义、变量声明、过程(子程序)定义以及基本的控制结构(如条件语句和循环语句)。 PL/0 语法规范 PL/0 是一种教学用的小型编程语言,由 Niklaus Wirth 设计,用于展示编译原理的核…...

《基于Apache Flink的流处理》笔记

思维导图 1-3 章 4-7章 8-11 章 参考资料 源码&#xff1a; https://github.com/streaming-with-flink 博客 https://flink.apache.org/bloghttps://www.ververica.com/blog 聚会及会议 https://flink-forward.orghttps://www.meetup.com/topics/apache-flink https://n…...

数据库分批入库

今天在工作中&#xff0c;遇到一个问题&#xff0c;就是分批查询的时候&#xff0c;由于批次过大导致出现了一些问题&#xff0c;一下是问题描述和解决方案&#xff1a; 示例&#xff1a; // 假设已有数据列表 dataList 和 PreparedStatement pstmt int batchSize 1000; // …...

安卓基础(aar)

重新设置java21的环境&#xff0c;临时设置 $env:JAVA_HOME "D:\Android Studio\jbr" 查看当前环境变量 JAVA_HOME 的值 echo $env:JAVA_HOME 构建ARR文件 ./gradlew :private-lib:assembleRelease 目录是这样的&#xff1a; MyApp/ ├── app/ …...

算法岗面试经验分享-大模型篇

文章目录 A 基础语言模型A.1 TransformerA.2 Bert B 大语言模型结构B.1 GPTB.2 LLamaB.3 ChatGLMB.4 Qwen C 大语言模型微调C.1 Fine-tuningC.2 Adapter-tuningC.3 Prefix-tuningC.4 P-tuningC.5 LoRA A 基础语言模型 A.1 Transformer &#xff08;1&#xff09;资源 论文&a…...