使用机器学习 最近邻算法(Nearest Neighbors)进行点云分析 (scikit-learn Open3D numpy)
使用 NearestNeighbors 进行点云分析
在数据分析和机器学习领域,最近邻算法(Nearest Neighbors)是一种常用的非参数方法。它广泛应用于分类、回归和聚类分析等任务。下面将介绍如何使用 scikit-learn
库中的 NearestNeighbors
类来进行点云数据的处理,并通过 Open3D
库进行可视化展示。
最近邻算法简介
最近邻算法是一种基于距离的算法,它通过计算数据点之间的距离来查找给定数据点的最近邻居。常用的距离度量包括欧氏距离、曼哈顿距离和余弦相似度等。最近邻算法的优点在于简单易懂且无需假设数据的分布形式,适用于各种类型的数据。
代码示例
使用 NearestNeighbors
查找点云数据的最近邻,并使用 Open3D
进行可视化。
步骤一:导入必要的库
import open3d as o3d
import numpy as np
from sklearn.neighbors import NearestNeighbors
import time
步骤二:定义函数来创建点与点之间的连接线
def create_lines_from_points(points, k_neighbors=6, color=[0, 1, 0]):if len(points) < 2:return Nonestart_time = time.time()neighbors = NearestNeighbors(n_neighbors=k_neighbors)neighbors.fit(points)distances, indices = neighbors.kneighbors(points)end_time = time.time()print(f"Nearest neighbors computation time: {end_time - start_time:.4f} seconds")start_time = time.time()lines = []for i in range(len(points)):for j in indices[i]:if i < j: # 避免重复的线lines.append([i, j])end_time = time.time()print(f"Line creation time: {end_time - start_time:.4f} seconds")colors = [color for i in range(len(lines))]line_set = o3d.geometry.LineSet()line_set.points = o3d.utility.Vector3dVector(points)line_set.lines = o3d.utility.Vector2iVector(lines)line_set.colors = o3d.utility.Vector3dVector(colors)return line_set
步骤三:加载点云数据
使用点云数据文件 .pcd
的内容。
pcd_file = """\
VERSION 0.7
FIELDS x y z
SIZE 4 4 4
TYPE F F F
COUNT 1 1 1
WIDTH 28
HEIGHT 1
VIEWPOINT 0 0 0 1 0 0 0
POINTS 28
DATA ascii
0.301945 -0.1810271 1.407832
0.3025161 -0.1733161 1.322455
0.3003909 -0.167791 1.717239
0.2926154 -0.1333728 1.246899
0.2981626 -0.1311488 1.376031
0.300947 -0.1268353 1.719725
0.2944916 -0.1170874 1.545582
0.3008177 -0.09701672 1.395218
0.2989618 -0.08497152 1.699149
0.3039065 -0.07092351 1.32867
0.3031552 -0.05290076 1.509094
0.2906472 0.02252534 1.617192
0.2972519 0.02116165 1.457043
0.3024158 0.02067187 1.402361
0.2987708 0.01975626 1.286629
0.3014581 0.06462696 1.304869
0.289153 0.1107126 1.859879
0.2879259 0.1625713 1.583842
0.2952633 0.1989845 1.431798
0.3078183 -0.1622952 1.816048
0.3001072 -0.147239 1.970708
0.2990342 -0.1194922 1.950798
0.2979593 -0.09225944 1.931052
0.2929263 0.02492997 1.965327
0.3061717 0.1117098 1.621875
0.3004842 0.03407142 1.999085
0.3023082 -0.1527775 1.553968
0.3008434 0.250506 1.55337
"""# 解析点云数据
lines = pcd_file.strip().split("\n")
points = []
for line in lines[11:]:points.append([float(value) for value in line.split()])
points = np.array(points)
步骤四:创建连接线并进行可视化
# 创建连接线并进行可视化
line_set = create_lines_from_points(points, k_neighbors=6, color=[0, 1, 0])
o3d.visualization.draw_geometries([line_set])
结论
以上展示了如何使用 scikit-learn
中的 NearestNeighbors
类来计算点云数据的最近邻,并使用 Open3D
库将结果进行可视化。这种方法可以用于点云数据的分析、物体检测以及3D建模等多个领域。
完整代码
import open3d as o3d
import numpy as np
from sklearn.neighbors import NearestNeighbors
import timedef create_lines_from_points(points, k_neighbors=6, color=[0, 1, 0]):if len(points) < 2:return Nonestart_time = time.time()neighbors = NearestNeighbors(n_neighbors=k_neighbors)neighbors.fit(points)distances, indices = neighbors.kneighbors(points)end_time = time.time()print(f"Nearest neighbors computation time: {end_time - start_time:.4f} seconds")start_time = time.time()lines = []for i in range(len(points)):for j in indices[i]:if i < j: # avoid duplicate lineslines.append([i, j])end_time = time.time()print(f"Line creation time: {end_time - start_time:.4f} seconds")colors = [color for i in range(len(lines))]line_set = o3d.geometry.LineSet()line_set.points = o3d.utility.Vector3dVector(points)line_set.lines = o3d.utility.Vector2iVector(lines)line_set.colors = o3d.utility.Vector3dVector(colors)return line_set# Load point cloud data from a .pcd file
pcd_file = """\
VERSION 0.7
FIELDS x y z
SIZE 4 4 4
TYPE F F F
COUNT 1 1 1
WIDTH 28
HEIGHT 1
VIEWPOINT 0 0 0 1 0 0 0
POINTS 28
DATA ascii
0.301945 -0.1810271 1.407832
0.3025161 -0.1733161 1.322455
0.3003909 -0.167791 1.717239
0.2926154 -0.1333728 1.246899
0.2981626 -0.1311488 1.376031
0.300947 -0.1268353 1.719725
0.2944916 -0.1170874 1.545582
0.3008177 -0.09701672 1.395218
0.2989618 -0.08497152 1.699149
0.3039065 -0.07092351 1.32867
0.3031552 -0.05290076 1.509094
0.2906472 0.02252534 1.617192
0.2972519 0.02116165 1.457043
0.3024158 0.02067187 1.402361
0.2987708 0.01975626 1.286629
0.3014581 0.06462696 1.304869
0.289153 0.1107126 1.859879
0.2879259 0.1625713 1.583842
0.2952633 0.1989845 1.431798
0.3078183 -0.1622952 1.816048
0.3001072 -0.147239 1.970708
0.2990342 -0.1194922 1.950798
0.2979593 -0.09225944 1.931052
0.2929263 0.02492997 1.965327
0.3061717 0.1117098 1.621875
0.3004842 0.03407142 1.999085
0.3023082 -0.1527775 1.553968
0.3008434 0.250506 1.55337
"""# Parse the point cloud data
lines = pcd_file.strip().split("\n")
points = []
for line in lines[11:]:points.append([float(value) for value in line.split()])
points = np.array(points)# Create lines from points and visualize
line_set = create_lines_from_points(points, k_neighbors=6, color=[0, 1, 0])
o3d.visualization.draw_geometries([line_set])
相关文章:

使用机器学习 最近邻算法(Nearest Neighbors)进行点云分析 (scikit-learn Open3D numpy)
使用 NearestNeighbors 进行点云分析 在数据分析和机器学习领域,最近邻算法(Nearest Neighbors)是一种常用的非参数方法。它广泛应用于分类、回归和聚类分析等任务。下面将介绍如何使用 scikit-learn 库中的 NearestNeighbors 类来进行点云数…...

安装jenkins最新版本初始化配置及使用JDK1.8构建项目详细讲解
导读 1.安装1.1.相关网址1.2.准备环境1.3.下载安装 2. 配置jenkins2.1.安装插件2.2.配置全局工具2.3.系统配置 3. 使用3.1.配置job3.2.构建 提示:如果只想看如何使用jdk1.8构建项目,直接看3.1即可。 1.安装 1.1.相关网址 Jenkins官网:https…...

微软子公司Xandr遭隐私诉讼,或面临巨额罚款
近日,欧洲隐私权倡导组织noyb对微软子公司Xandr提起了诉讼,指控其透明度不足,侵犯了欧盟公民的数据访问权。据指控,Xandr的行为涉嫌违反《通用数据保护条例》(GFPR),因其处理信息并创建用于微目…...
【VRP】基于常春藤算法IVY求解带时间窗的车辆路径问题TWVRP,最短距离附Matlab代码
% VRP - 基于IVY算法的TWVRP最短距离求解 % 数据准备 % 假设有一组客户点的坐标和对应的时间窗信息 % 假设数据已经存储在 coordinates、timeWindows 和 demands 变量中 % 参数设置 numCustomers size(coordinates, 1); % 客户点数量 vehicleCapacity 100; % 车辆容量 numV…...
常用软件的docker compose安装
简介 Docker Compose 是 Docker 的一个工具,用于定义和管理多容器 Docker 应用。通过使用一个单独的 YAML 文件,您可以定义应用所需的所有服务,然后使用一个简单的命令来启动和运行这些服务。Docker Compose 非常适合于微服务架构或任何需要…...

Excel第28享:如何新建一个Excel表格
一、背景需求 小姑电话说:要新建一个表格,并实现将几个单元格进行合并的需求。 二、解决方案 1、在电脑桌面上空白地方,点击鼠标右键,在下拉的功能框中选择“XLS工作表”或“XLSX工作表”都可以,如下图所示。 之后&…...

计算机网络知识汇总
OSI七层模型 七层模型一般指开放系统互连参考模型,开放系统互连参考模型 (Open System Interconnect 简称OSI),OSI参考模型是具有7个层次的框架,自底向上的7个层次分别是物理层、数据链路层、网络层、传输层、会话层、…...

数据结构——考研笔记(二)线性表的定义和线性表之顺序表
文章目录 二、线性表2.1 定义、基本操作2.1.1 知识总览2.1.2 线性表的定义2.1.3 线性表的基本操作2.1.4 知识回顾与重要考点 2.2 顺序表2.2.1 知识总览2.2.2 顺序表的定义2.2.3 顺序表的实现——静态分配2.2.4 顺序表的实现——动态分配2.2.5 知识回顾与重要考点2.2.6 顺序表的…...
quota使用
一、检查系统是否支持 grep CONFIG_QUOTA /boot/config* CONFIG_QUOTAy CONFIG_QUOTA_NETLINK_INTERFACEy # CONFIG_QUOTA_DEBUG is not set CONFIG_QUOTA_TREEy CONFIG_QUOTACTLy CONFIG_QUOTACTL_COMPATy二、安装 yum install -y quota三、配置 3.1 创建磁盘 格式一定要 …...

解决fidder小黑怪倒出JMeter文件缺失域名、请求头
解决fidder小黑怪倒出JMeter文件缺失域名、请求头 1、目录结构: 2、代码 coding:utf-8 Software:PyCharm Time:2024/7/10 14:02 Author:Dr.zxyimport zipfile import os import xml.etree.ElementTree as ET import re#定义信息头 headers_to_extract [Host, Conn…...
智慧城市的神经网络:Transformer模型在智能城市构建中的应用
智慧城市的神经网络:Transformer模型在智能城市构建中的应用 随着城市化的快速发展,智能城市的概念应运而生,旨在通过先进的信息技术提升城市管理效率和居民生活质量。Transformer模型,作为人工智能领域的一颗新星,其…...

产品经理-研发流程-敏捷开发-迭代-需求评审及产品规划(15)
敏捷开发是以用户的需求进化为核心,采用迭代、循序渐进的方法进行软件开发。 通俗来说,敏捷开发是一个软件开发流程,是一个采用了迭代方法的开发流程 简单来说,迭代就是把一个大产品拆分出一些最小的实现单位。完成不同的迭代就最…...
Ansible 安装及使用说明
方案1. 直接下载 源码包到本地后安装 ansible 下载地址:https://releases.ansible.com/ansible/ ansible社区: https://github.com/ansible/ansible 下载地址:GitHub - ansible/ansible at v2.9.0 方案2. 以腾讯的yum源说明:腾讯云文档…...
MyBatisPlus实现增删改查
文章目录 MyBatisPlus实现增删改查基本操作分页查询配置分页插件 MyBatisPlus实现增删改查 实体类GkUser package com.geekmice.springbootselfexercise.entity;import com.baomidou.mybatisplus.annotation.IdType; import com.baomidou.mybatisplus.annotation.TableField;…...
【Rust】——不安全Rust
💻博主现有专栏: C51单片机(STC89C516),c语言,c,离散数学,算法设计与分析,数据结构,Python,Java基础,MySQL,linux…...
使机器人在执行任务时更加稳定
为了使机器人在执行任务时更加稳定,调整参数时需要考虑多个因素,如步态、速度、角度等。这些参数的调整需要基于实际环境、任务需求和机器人自身的物理特性。以下是一些具体的调整建议: 1. 调整步态和步高 gait_type3; step_height0.03;步态…...
FFmpeg学习(五)-- libswresample使用说明及函数介绍
libswresample Audio合成和重采样 libswresample库用来进行audio数据的合成和重采样操作。调用流程: 调用 swr_alloc 创建SwrContext结构体。设置SwrContext参数,有两种方法: 调用av_opt_set_xx函数逐项设置参数;swr_alloc_set_…...

车载视频监控管理方案:无人驾驶出租车安全出行的保障
近日,无人驾驶出租车“萝卜快跑”在武汉开放载人测试成为热门话题。随着科技的飞速发展,无人驾驶技术已逐渐从概念走向现实,特别是在出租车行业中,无人驾驶出租车的推出将为公众提供更为安全、便捷、高效的出行服务。 视频监控技…...

05STM32EXIT外部中断中断系统
STM32EXIT外部中断&中断系统 中断系统中断触发条件:中断处理流程和用途: STM32中断NVIC嵌套中断向量控制器基本结构NVIC基本结构NVIC优先级分组EXTI简介EXTI基本结构AFIO复用IO口EXTI内部框图旋转编码器简介硬件电路外设手册里的介绍NVIC中断使能寄存…...
MetaGPT和LangGraph对比
MetaGPT和LangGraph是两个不同的AI Agent框架,各有其特点和优势:MetaGPT: MetaGPT是一个多Agent协作框架,模拟软件公司的运作方式。它包含多个角色如产品经理、架构师、项目经理和工程师,每个角色都有特定的职责。MetaGPT采用对话模式&#…...

深度学习在微纳光子学中的应用
深度学习在微纳光子学中的主要应用方向 深度学习与微纳光子学的结合主要集中在以下几个方向: 逆向设计 通过神经网络快速预测微纳结构的光学响应,替代传统耗时的数值模拟方法。例如设计超表面、光子晶体等结构。 特征提取与优化 从复杂的光学数据中自…...

【人工智能】神经网络的优化器optimizer(二):Adagrad自适应学习率优化器
一.自适应梯度算法Adagrad概述 Adagrad(Adaptive Gradient Algorithm)是一种自适应学习率的优化算法,由Duchi等人在2011年提出。其核心思想是针对不同参数自动调整学习率,适合处理稀疏数据和不同参数梯度差异较大的场景。Adagrad通…...
渲染学进阶内容——模型
最近在写模组的时候发现渲染器里面离不开模型的定义,在渲染的第二篇文章中简单的讲解了一下关于模型部分的内容,其实不管是方块还是方块实体,都离不开模型的内容 🧱 一、CubeListBuilder 功能解析 CubeListBuilder 是 Minecraft Java 版模型系统的核心构建器,用于动态创…...
vue3 定时器-定义全局方法 vue+ts
1.创建ts文件 路径:src/utils/timer.ts 完整代码: import { onUnmounted } from vuetype TimerCallback (...args: any[]) > voidexport function useGlobalTimer() {const timers: Map<number, NodeJS.Timeout> new Map()// 创建定时器con…...

Ascend NPU上适配Step-Audio模型
1 概述 1.1 简述 Step-Audio 是业界首个集语音理解与生成控制一体化的产品级开源实时语音对话系统,支持多语言对话(如 中文,英文,日语),语音情感(如 开心,悲伤)&#x…...
laravel8+vue3.0+element-plus搭建方法
创建 laravel8 项目 composer create-project --prefer-dist laravel/laravel laravel8 8.* 安装 laravel/ui composer require laravel/ui 修改 package.json 文件 "devDependencies": {"vue/compiler-sfc": "^3.0.7","axios": …...

论文笔记——相干体技术在裂缝预测中的应用研究
目录 相关地震知识补充地震数据的认识地震几何属性 相干体算法定义基本原理第一代相干体技术:基于互相关的相干体技术(Correlation)第二代相干体技术:基于相似的相干体技术(Semblance)基于多道相似的相干体…...
纯 Java 项目(非 SpringBoot)集成 Mybatis-Plus 和 Mybatis-Plus-Join
纯 Java 项目(非 SpringBoot)集成 Mybatis-Plus 和 Mybatis-Plus-Join 1、依赖1.1、依赖版本1.2、pom.xml 2、代码2.1、SqlSession 构造器2.2、MybatisPlus代码生成器2.3、获取 config.yml 配置2.3.1、config.yml2.3.2、项目配置类 2.4、ftl 模板2.4.1、…...

并发编程 - go版
1.并发编程基础概念 进程和线程 A. 进程是程序在操作系统中的一次执行过程,系统进行资源分配和调度的一个独立单位。B. 线程是进程的一个执行实体,是CPU调度和分派的基本单位,它是比进程更小的能独立运行的基本单位。C.一个进程可以创建和撤销多个线程;同一个进程中…...
Python+ZeroMQ实战:智能车辆状态监控与模拟模式自动切换
目录 关键点 技术实现1 技术实现2 摘要: 本文将介绍如何利用Python和ZeroMQ消息队列构建一个智能车辆状态监控系统。系统能够根据时间策略自动切换驾驶模式(自动驾驶、人工驾驶、远程驾驶、主动安全),并通过实时消息推送更新车…...