当前位置: 首页 > news >正文

机器学习基本概念,Numpy,matplotlib和张量Tensor知识进一步学习

机器学习一些基本概念:

监督学习

监督学习是机器学习中最常见的形式之一,它涉及到使用带标签的数据集来训练模型。这意味着每条训练数据都包含输入特征对应的输出标签。目标是让模型学会从输入到输出的映射,这样当给出新的未见过的输入时,模型可以做出准确的预测。

例子
  • 分类问题(如垃圾邮件检测,识别邮件是否为垃圾邮件)
  • 回归问题(如房价预测,预测连续值)

非监督学习

非监督学习用于没有标签的数据集,即只包含输入特征而没有对应的输出标签。目标通常是发现数据中的结构或模式,例如分组(聚类)或找到数据的低维度表示(降维)。

例子
  • 聚类(如顾客细分,将顾客分组)
  • 降维(如PCA,用于数据可视化或预处理)

强化学习

强化学习是另一种学习形式,其中智能体(agent)在一个环境中学习如何采取行动以最大化某种累积奖励。智能体与环境交互,执行动作,然后基于反馈(奖励或惩罚)调整其策略。

例子
  • 游戏玩家(如AlphaGo,下围棋)
  • 自动驾驶汽车(学习如何在道路上导航)

其他学习类型

除了上述三种主要的学习类型,还有其他的学习方法,例如:

  • 半监督学习:结合少量有标签数据和大量无标签数据来改善学习模型的性能。
  • 迁移学习:利用从一个领域学到的知识去解决另一个相关领域的问题。
  • 在线学习:模型在实时接收数据的同时进行学习,持续更新模型以适应新数据。

应用场景

这些学习方法在多个领域有广泛应用,比如计算机视觉、自然语言处理、推荐系统、生物信息学、金融分析等等。

Numpy

介绍:

这是一个强大的库,提供了大量的数学函数以及多维数组和矩阵运算的支持。它是许多其他科学计算库的基础,如Scipy、Pandas和Matplotlib。在深度学习中,Numpy常用于数据预处理和后处理。

具体代码:

矩阵转置:

import numpy as np
matrix=np.array([[9,3,2],[2,4,5],[8,7,9]])
transposed_matrix=matrix.T
print("Original Matrix:")
print(matrix)
print("\nTransposed Matrix:")
print(transposed_matrix)

matplotlib

介绍:这是一个绘图库,可以生成各种静态、动态、交互式的可视化图表。在数据分析和机器学习中,Matplotlib被用来可视化数据和模型的表现,帮助理解和调试。

具体代码:

import matplotlib.pyplot as plt
import numpy as np# 创建x值,这里使用numpy的linspace函数生成从0到10的50个均匀间隔的点
x = np.linspace(0, 10, 50)# 根据x值计算对应的y值
y = 2 * x + 1# 使用matplotlib绘制图形
plt.figure()  # 创建一个新的figure窗口
plt.plot(x, y, label='y = 2x + 1')  # 绘制x和y的线性关系
plt.title('Simple Linear Plot')  # 设置图形标题
plt.xlabel('x-axis')  # 设置x轴标签
plt.ylabel('y-axis')  # 设置y轴标签
plt.legend()  # 显示图例
plt.grid(True)  # 显示网格
plt.show()  # 展示图形

张量Tensor

当我们谈论机器学习和神经网络时,张量(Tensor)是一个非常重要的概念。理解张量对于理解神经网络如何处理和操作数据至关重要。让我来详细解释张量的相关知识。

张量的基本概念

  1. 张量是什么?

    • 在计算机科学和数学中,张量是多维数组的泛化。在PyTorch、TensorFlow等机器学习框架中,张量是这些框架中用于表示和操作数据的基本数据结构。它可以是一个标量(零维张量)、向量(一维张量)、矩阵(二维张量),甚至更高维的数据结构。
  2. 张量在神经网络中的作用

    • 数据存储和处理: 张量是神经网络处理数据的基本单位。神经网络的输入、输出、中间层的数据都以张量的形式存在。例如,一张彩色图像可以表示为一个三维张量,包括宽度、高度和RGB通道。
    • 加速计算: 张量的结构使得现代硬件(如GPU)能够高效地并行计算,从而加速神经网络的训练和推断过程。
    • 自动微分: 张量不仅仅是数据容器,还支持自动微分。这意味着在神经网络的反向传播过程中,张量可以追踪和记录梯度信息,帮助优化器更新模型参数。

张量的常见操作

  • 创建张量: 可以通过构造函数或特定的库函数(如PyTorch中的torch.tensor())来创建张量,初始化为特定的值或随机数。

  • 索引和切片: 可以像操作数组一样,在张量中获取特定位置的值或切片。

  • 数学运算: 张量支持各种数学运算,包括加法、乘法、矩阵乘法等。这些运算是神经网络的基础,用于权重更新和激活函数应用等。

  • 形状变换: 可以改变张量的形状,例如从一个三维张量变为二维,或者反之,这在神经网络的不同层之间传递数据时非常常见。

代码示例: 

1.创建张量
  • 使用torch.Tensor()从数据中创建张量。 
    import torch# 从列表创建张量
    tensor_data = [1, 2, 3, 4, 5]
    t = torch.Tensor(tensor_data)
    print(t)
    

  • 使用torch.arange()创建等差张量。
    # 创建等差张量
    t = torch.arange(1, 10, 2)
    print(t)
    

  • 使用torch.zeros()torch.ones()创建全零张量和全一张量。
    # 创建全零张量和全一张量
    zeros_tensor = torch.zeros(3, 3)
    ones_tensor = torch.ones(2, 2)
    print(zeros_tensor)
    print(ones_tensor)
    

2.张量的基本操作
  • 索引和切片:使用索引和切片访问和操作张量中的元素。
    t = torch.Tensor([1, 2, 3, 4, 5])# 索引操作
    print(t[0])  # 访问第一个元素
    print(t[2:4])  # 切片操作,获取第3到第4个元素# 修改元素值
    t[1] = 10
    print(t)
    

  • 张量运算:支持各种数学运算
    t1 = torch.Tensor([1, 2, 3])
    t2 = torch.Tensor([4, 5, 6])# 加法
    print(t1 + t2)# 矩阵乘法
    matrix1 = torch.Tensor([[1, 2], [3, 4]])
    matrix2 = torch.Tensor([[5, 6], [7, 8]])
    print(torch.matmul(matrix1, matrix2))# 创建一个示例矩阵
    A = torch.tensor([[1, 2, 3],[4, 5, 6]])# 使用transpose方法进行转置操作
    A_transposed = A.transpose(0, 1)  # 0和1表示维度的索引,即行和列的索引print("原始矩阵 A:")
    print(A)print("\n转置后的矩阵 A_transposed:")
    print(A_transposed)
    

  • 形状操作:改变张量的形状
    t = torch.arange(1, 10)
    reshaped_t = t.view(3, 3)  # 改变形状为3x3
    print(reshaped_t)
    

4.高级操作: 

  • 自动求导:张量可以跟踪其计算历史,支持自动求导。
    import torch# 创建一个张量并设置requires_grad=True来启用自动求导
    x = torch.tensor([2.0], requires_grad=True)# 定义计算图
    y = x**2 + 5*x# 自动计算梯度
    y.backward()# 打印出x的梯度
    print(x.grad)
    

  • GPU加速:可以将张量移动到GPU上加速计算。
    if torch.cuda.is_available():device = torch.device("cuda")t = torch.Tensor([1, 2, 3]).to(device)print(t)
    

部分运行结果

在神经网络中的应用示例

考虑一个简单的卷积神经网络(CNN)用于识别图像中的数字(如X和O):

  • 输入数据表示: 图像数据通常以张量的形式输入神经网络。一张256x256像素的彩色图像可以表示为一个形状为 [3, 256, 256] 的张量,其中3表示RGB通道数。

  • 网络参数表示: 神经网络的权重和偏置也是以张量的形式存储和更新的。这些参数张量的维度和形状决定了神经网络的结构和复杂度。

  • 计算过程: 在前向传播过程中,输入张量经过一系列层级的变换和激活函数应用,生成输出张量。这些过程中的数学运算和数据传递都是通过张量完成的。

总结

张量在神经网络中扮演了不可或缺的角色,它们不仅是数据的容器,还是神经网络操作和优化的核心。

相关文章:

机器学习基本概念,Numpy,matplotlib和张量Tensor知识进一步学习

机器学习一些基本概念: 监督学习 监督学习是机器学习中最常见的形式之一,它涉及到使用带标签的数据集来训练模型。这意味着每条训练数据都包含输入特征和对应的输出标签。目标是让模型学会从输入到输出的映射,这样当给出新的未见过的输入时…...

博客前端项目学习day01

这里写自定义目录标题 登录创建项目配置环境变量,方便使用登录页面验证码登陆表单 在VScode上写前端,采用vue3。 登录 创建项目 检查node版本 node -v 创建一个新的项目 npm init vitelatest blog-front-admin 中间会弹出询问是否要安装包&#xff0c…...

java Collections.synchronizedCollection方法介绍

Collections.synchronizedCollection 是 Java 中的一个实用方法,用于创建一个线程安全的集合。它通过包装现有的集合对象来实现线程安全,以确保在多线程环境中对集合的访问是安全的。 主要功能 线程安全:通过同步包装现有的集合,使得在多线程环境中对集合的所有访问(包括…...

力扣每日一题:3011. 判断一个数组是否可以变为有序

力扣官网:前往作答!!!! 今日份每日一题: 题目要求: 给你一个下标从 0 开始且全是 正 整数的数组 nums 。 一次 操作 中,如果两个 相邻 元素在二进制下数位为 1 的数目 相同 &…...

ubuntu 上vscode +cmake的debug调试配置方法

在ubuntu配置pcl点云库以及opencv库的时候,需要在CMakeLists.txt中加入相应的代码。配置完成后,无法调试,与在windows上体验vs studio差别有点大。 找了好多调试debug配置方法,最终能用的有几种,但是有一种特别好用&a…...

使用Redis实现签到功能:Java示例解析

使用Redis实现签到功能:Java示例解析 在本博客中,我们将讨论一个使用Redis实现的签到功能的Java示例。该示例包括两个主要方法:sign()和signCount(),分别用于用户签到和计算用户当月的签到次数。 1. 签到方法:sign()…...

tableau标靶图,甘特图与瀑布图绘制 - 9

标靶图,甘特图与瀑布图 1. 标靶图绘制1.1 筛选器筛选日期1.2 条形图绘制1.3 编辑参考线1.4 设置参考线1.5 设置参考区间1.6 四分位设置1.7 其他标靶图结果显示 2.甘特图绘制2.1 选择列属性2.2 选择列属性2.3 创建新字段2.4 设置天数大小及颜色 3. 瀑布图绘制3.1 she…...

双向链表专题

在之前的单链表专题中,了解的单链表的结构是如何实现的,以及学习了如何实现单链表得各个功能。单链表虽然也能实现数据的增、删、查、改等功能,但是要找到尾节点或者是要找到指定位置之前的节点时,还是需要遍历链表,这…...

SpringCoud组件

一、使用SpringCloudAlibaba <dependencyManagement><dependencies><dependency><groupId>com.alibaba.cloud</groupId><artifactId>spring-cloud-alibaba-dependencies</artifactId><version>2023.0.1.0</version><…...

向量的定义和解释

这是一个向量&#xff1a; 向量具有大小&#xff08;大小&#xff09;和方向&#xff1a; 线的长度显示其大小&#xff0c;箭头指向方向。 在这里玩一个&#xff1a; 我们可以通过将它们从头到尾连接来添加两个向量&#xff1a; 无论我们添加它们的顺序如何&#xff0c;我们都…...

IoTDB 集群高效管理:一键启停功能介绍

如何快速启动、停止 IoTDB 集群节点的功能详解&#xff01; 在部署 IoTDB 集群时&#xff0c;对于基础的单机模式&#xff0c;启动过程相对简单&#xff0c;仅需执行 start-standalone 脚本来启动 1 个 ConfigNode 节点和 1 个 DataNode 节点。然而&#xff0c;对于更高级的分布…...

一个spring boot项目的启动过程分析

1、web.xml 定义入口类 <context-param><param-name>contextConfigLocation</param-name><param-value>com.baosight.ApplicationBoot</param-value> </context-param> 2、主入口类: ApplicationBoot,SpringBoot项目的mian函数 SpringBo…...

智驭未来:人工智能与目标检测的深度交融

在科技日新月异的今天&#xff0c;人工智能&#xff08;AI&#xff09;如同一股不可阻挡的浪潮&#xff0c;正以前所未有的速度重塑着我们的世界。在众多AI应用领域中&#xff0c;目标检测以其独特的魅力和广泛的应用前景&#xff0c;成为了连接现实与智能世界的桥梁。本文旨在…...

01MFC建立单个文件类型——画线

文章目录 选择模式初始化文件作用解析各初始化文件解析 类导向创建鼠标按键按下抬起操作函数添加一个变量记录起始位置注意事项代码实现效果图 虚实/颜色线 选择模式 初始化文件作用解析 运行&#xff1a; 各初始化文件解析 MFC&#xff08;Microsoft Foundation Classes&am…...

免杀中用到的工具

&#x1f7e2; 绝大部分无法直接生成免杀木马&#xff0c;开发、测试免杀时会用到。 工具简称 概述 工具来源 下载路径 x64dbg 中文版安装程序(Jan 6 2024).exe 52pojie hellshell 官方的加密或混淆shellcode github Releases ORCA / HellShell GitLab hellshe…...

[vite] Pre-transform error: Cannot find package pnpm路径过长导致运行报错

下了套vue3的代码&#xff0c;执行pnpm install初始化&#xff0c;使用vite启动&#xff0c;启动后访问就会报错 报错信息 ERROR 16:40:53 [vite] Pre-transform error: Cannot find package E:\work\VSCodeProjectWork\jeecg\xxxxxxxxx-next\xxxxxxxxx-next-jeecgBoot-vue3\…...

Promise总结

Promise.then() 的返回值仍然是 Promise 对象 <!DOCTYPE html> <html lang"en"><head><meta charset"UTF-8" /><meta name"viewport" content"widthdevice-width, initial-scale1.0" /><title>D…...

ROI 接口便捷修改

传入的图片截取ROI后再进入识别接口 &#xff08;识别接口比ROI接口的函数参数少一个传入的ROI&#xff09; 无点只有点集 返回双点集 //平直冷侧翅片 bool ImageProcessingTest::straightColdSideFin_ROI(cv::Mat img, cv::Rect ROI, std::vector<cv::Point>& topL…...

jenkins打包java项目报错Error: Unable to access jarfile tlm-admin.jar

jenkins打包boot项目 自动重启脚本失败 查看了一下项目日志报错&#xff1a; Error: Unable to access jarfile tlm-admin.jar我检查了一下这个配置&#xff0c;感觉没有问题&#xff0c;包可以正常打&#xff0c; cd 到项目目录下面&#xff0c;手动执行这个sh脚本也是能正常…...

SQL Server设置端口:跨平台指南

在使用SQL Server时&#xff0c;设置或修改其监听的端口是确保数据库服务安全访问和高效管理的重要步骤。由于SQL Server可以部署在多种操作系统上&#xff0c;包括Windows、Linux和Docker容器等&#xff0c;因此设置端口的步骤和方法也会因平台而异。本文将为您提供一个跨平台…...

SkyWalking 10.2.0 SWCK 配置过程

SkyWalking 10.2.0 & SWCK 配置过程 skywalking oap-server & ui 使用Docker安装在K8S集群以外&#xff0c;K8S集群中的微服务使用initContainer按命名空间将skywalking-java-agent注入到业务容器中。 SWCK有整套的解决方案&#xff0c;全安装在K8S群集中。 具体可参…...

Lombok 的 @Data 注解失效,未生成 getter/setter 方法引发的HTTP 406 错误

HTTP 状态码 406 (Not Acceptable) 和 500 (Internal Server Error) 是两类完全不同的错误&#xff0c;它们的含义、原因和解决方法都有显著区别。以下是详细对比&#xff1a; 1. HTTP 406 (Not Acceptable) 含义&#xff1a; 客户端请求的内容类型与服务器支持的内容类型不匹…...

Module Federation 和 Native Federation 的比较

前言 Module Federation 是 Webpack 5 引入的微前端架构方案&#xff0c;允许不同独立构建的应用在运行时动态共享模块。 Native Federation 是 Angular 官方基于 Module Federation 理念实现的专为 Angular 优化的微前端方案。 概念解析 Module Federation (模块联邦) Modul…...

从零实现STL哈希容器:unordered_map/unordered_set封装详解

本篇文章是对C学习的STL哈希容器自主实现部分的学习分享 希望也能为你带来些帮助~ 那咱们废话不多说&#xff0c;直接开始吧&#xff01; 一、源码结构分析 1. SGISTL30实现剖析 // hash_set核心结构 template <class Value, class HashFcn, ...> class hash_set {ty…...

零基础设计模式——行为型模式 - 责任链模式

第四部分&#xff1a;行为型模式 - 责任链模式 (Chain of Responsibility Pattern) 欢迎来到行为型模式的学习&#xff01;行为型模式关注对象之间的职责分配、算法封装和对象间的交互。我们将学习的第一个行为型模式是责任链模式。 核心思想&#xff1a;使多个对象都有机会处…...

vue3+vite项目中使用.env文件环境变量方法

vue3vite项目中使用.env文件环境变量方法 .env文件作用命名规则常用的配置项示例使用方法注意事项在vite.config.js文件中读取环境变量方法 .env文件作用 .env 文件用于定义环境变量&#xff0c;这些变量可以在项目中通过 import.meta.env 进行访问。Vite 会自动加载这些环境变…...

如何理解 IP 数据报中的 TTL?

目录 前言理解 前言 面试灵魂一问&#xff1a;说说对 IP 数据报中 TTL 的理解&#xff1f;我们都知道&#xff0c;IP 数据报由首部和数据两部分组成&#xff0c;首部又分为两部分&#xff1a;固定部分和可变部分&#xff0c;共占 20 字节&#xff0c;而即将讨论的 TTL 就位于首…...

基于Java+MySQL实现(GUI)客户管理系统

客户资料管理系统的设计与实现 第一章 需求分析 1.1 需求总体介绍 本项目为了方便维护客户信息为了方便维护客户信息&#xff0c;对客户进行统一管理&#xff0c;可以把所有客户信息录入系统&#xff0c;进行维护和统计功能。可通过文件的方式保存相关录入数据&#xff0c;对…...

逻辑回归暴力训练预测金融欺诈

简述 「使用逻辑回归暴力预测金融欺诈&#xff0c;并不断增加特征维度持续测试」的做法&#xff0c;体现了一种逐步建模与迭代验证的实验思路&#xff0c;在金融欺诈检测中非常有价值&#xff0c;本文作为一篇回顾性记录了早年间公司给某行做反欺诈预测用到的技术和思路。百度…...

ubuntu22.04 安装docker 和docker-compose

首先你要确保没有docker环境或者使用命令删掉docker sudo apt-get remove docker docker-engine docker.io containerd runc安装docker 更新软件环境 sudo apt update sudo apt upgrade下载docker依赖和GPG 密钥 # 依赖 apt-get install ca-certificates curl gnupg lsb-rel…...