初识c++(命名空间,缺省参数,函数重载)
一、命名空间
1、namespace的意义
在C/C++中,变量、函数和后面要学到的类都是大量存在的,这些变量、函数和类的名称将都存在于全
局作用域中,可能会导致很多冲突。使用命名空间的目的是对标识符的名称进行本地化,以避免命名
冲突或名字污染,namespac关键字的出现就是针对这种问题的。
c语言项目类似下面程序这样的命名冲突是普遍存在的问题,C++引入namespac就是为了更好的解决
这样的问题:(因为我们设置的变量rand和stdlib.h中的rand函数冲突所以报错)
#include <stdio.h>
#include <stdlib.h>
int rand = 10;
int main()
{// 编译报错:error C2365: “rand”: 重定义;以前的定义是“函数”printf("%d\n", rand);return 0;
}
2、namespace的定义
1、定义命名空间,需要使用法到namespace关键字,后面跟命名空间的名字,然后接⼀对{}即可,{}中
即为命名空间的成员。命名空间中可以定义变量/函数/类型等。(注意{}后不跟“;”)。
2、namespace本质是定义出⼀个域,这个域跟全局域各自独立,不同的域可以定义同名变量,所以下
面的rand不在冲突了。
#include<iostream>
#include <stdio.h>
#include <stdlib.h>
namespace tmp
{int rand = 0;
}
int main()
{printf("%d\n", rand);return 0;
}
3、C++中域有函数局部域,全局域,命名空间域,类域;域影响的是编译时语法查找⼀个变量/函数/
类型出处(声明或定义)的逻辑,所有有了域隔离,名字冲突就解决了。局部域和全局域除了会影响
编译查找逻辑,还会影响变量的声明周期,命名空间域和类域不影响变量声明周期。
4、namespace只能定义在全局,当然他还可以嵌套定义。
#include<iostream>
#include <stdio.h>
#include <stdlib.h>
namespace tmp
{int rand = 0;namespace tmp1{int Add(int left, int right){return left + right;}struct Node{struct Node* next;int val;};}}
int main()
{printf("%d\n", rand);return 0;
}
5、项目工程中多文件中定义的同名namespace会认为是⼀个namespace,不会冲突。
test.c文件
#include<iostream>
#include <stdio.h>
#include <stdlib.h>
#include"test.h"
namespace tmp
{int rand = 0;namespace tmp1{int Add(int left, int right){return left + right;}struct Node{struct Node* next;int val;};}}
int main()
{printf("%d\n", tmp::d);return 0;
}
test.h文件
#pragma once
namespace tmp
{int d = 0;
}
可以发现在.c文件中可以使用tmp空间中的d变量 。
6、C++标准库都放在⼀个叫std(standard)的命名空间中。
7、如果想使用全局域中的变量我们可以这么操作:
int a = 3;
int main()
{int a = 0;printf("%d\n", ::a);return 0;
}
这样printf先打印的是3。
3、命名空间的使用
编译查找⼀个变量的声明/定义时,默认只会在局部或者全局查找,不会到命名空间里面去查找。所以
下面程序会编译报错。
namespace tmp
{int d = 0;namespace tmp1{int Add(int left, int right){return left + right;}struct Node{struct Node* next;int val;};}
}
int main()
{int a = 0;printf("%d\n", d);//未定义标识符dreturn 0;
}
所以我们要使用命名空间中定义的变量/函数,有三种方式:
1、指定命名空间访问,项目中推荐这种方式。
tmp::d
2、using将命名空间中某个成员展开,项目中经常访问的不存在冲突的成员推荐这种方式。
namespace tmp
{int d = 0;namespace tmp1{int Add(int left, int right){return left + right;}struct Node{struct Node* next;int val;};}
}
using tmp::d;
int main()
{int a = 0;printf("%d\n", d);//未定义标识符dreturn 0;
}
3、展开命名空间中全部成员,项目不推荐,冲突风险很大,日常小练习程序为了方便推荐使用。
namespace tmp
{int d = 0;namespace tmp1{int Add(int left, int right){return left + right;}struct Node{struct Node* next;int val;};}
}
using namespace tmp;
int main()
{int a = 0;printf("%d\n", d);//未定义标识符dreturn 0;
}
二、输入和输出
1、 是 Input Output Stream 的缩写,是标准的输入、输出流库,定义了标准的输入、输
出对象。
2、std::cin 是 istream 类的对象,它主要面向窄字符(narrow characters (of type char))的标准输
入流。
3、std::cout 是 ostream 类的对象,它主要面向窄字符的标准输出流。
4、std::endl 是⼀个函数,流插入输出时,相当于插入⼀个换行字符加刷新缓冲区。
5、<<是流插入运算符,>>是流提取运算符。(C语言还用这两个运算符做位运算左移/右移)
6、使用C++输入输出更方便,不需要像printf/scanf输入输出时那样,需要手动指定格式,C**++的输入**
输出可以自动识别变量类型(本质是通过函数重载实现的),其实最重要的是C++的流能更好的支持自定义
类型对象输入和输出。
#include<iostream>
#include <stdio.h>
#include <stdlib.h>
namespace tmp
{int a = 0;double b = 0.0;char c = '0';namespace tmp1{int Add(int left, int right){return left + right;}struct Node{struct Node* next;int val;};}
}
using namespace tmp;
using namespace std;
int main()
{cin >> a >> b >> c;cout << a << b << c;return 0;
}
7、cout/cin/endl等都属于C++标准库,C++标准库都放在⼀个叫std(standard)的命名空间中,所以要
通过命名空间的使用方式去用他们。
8、⼀般日常练习中我们可以using namespace std,实际项目开发中不建议using namespace std。
三、 缺省参数
1、缺省参数的定义以及规定
缺省参数是声明或定义函数时为函数的参数指定⼀个缺省值。在调用该函数时,如果没有指定实参
则采用该形参的缺省值,否则使用指定的实参,缺省参数分为全缺省和半缺省参数。(有些地方把
缺省参数也叫默认参数)。
全缺省就是全部形参给缺省值,半缺省就是部分形参给缺省值。C++规定半缺省参数必须从右往左
依次连续缺省,不能间隔跳跃给缺省值。
带缺省参数的函数调用,C++规定必须从左到右依次给实参,不能跳跃给实参。
函数声明和定义分离时,缺省参数不能在函数声明和定义中同时出现,规定必须函数声明给缺省
值。
#include <iostream>
using namespace std;
void Func(int a = 0)
{cout << a << endl;
}
int main()
{Func(); // 没有传参时,使⽤参数的默认值Func(10); // 传参时,使⽤指定的实参return 0;
}

2、全缺省和半缺省
#include <iostream>
using namespace std;
// 全缺省
void Func1(int a = 10, int b = 20, int c = 30)
{cout << "a = " << a << endl;cout << "b = " << b << endl;cout << "c = " << c << endl << endl;
}
// 半缺省
void Func2(int a, int b = 10, int c = 20)
{cout << "a = " << a << endl;cout << "b = " << b << endl;cout << "c = " << c << endl << endl;
}
int main()
{Func1();Func1(1);Func1(1, 2);Func1(1, 2, 3);Func2(100);Func2(100, 200);Func2(100, 200, 300);return 0;
}
半缺省不能这么写:
void Func2(int a = 10, int b, int c = 20)
{cout << "a = " << a << endl;cout << "b = " << b << endl;cout << "c = " << c << endl << endl;
}
//或者
void Func2(int a = 10, int b, int c)
{cout << "a = " << a << endl;cout << "b = " << b << endl;cout << "c = " << c << endl << endl;
}
必须严格遵守:
半缺省参数必须从右往左依次连续缺省,不能间隔跳跃给缺省值。
3、缺省参数的实际应用
我们在没有学c++之前我们实现栈的初始化以及插人时我们是这么写的:
typedef int STDataType;
typedef struct Stack
{STDataType* a;int top;int capacity;
}ST;
// 栈顶
void STInit(ST* ps, int n)
{assert(ps);ps->a = (STDataType*)malloc(n * sizeof(STDataType));ps->top = 0;ps->capacity = n;
}
void STPush(ST* ps, STDataType x)
{assert(ps);// 满了, 扩容if (ps->top == ps->capacity){printf("扩容\n");int newcapacity = ps->capacity == 0 ? 4 : ps->capacity* 2;STDataType* tmp = (STDataType*)realloc(ps->a,newcapacity * sizeof(STDataType));if (tmp == NULL){perror("realloc fail");return;}ps->a = tmp;ps->capacity = newcapacity;}ps->a[ps->top] = x;ps->top++;
}
如果我们要插入100个数据则就需要不断的扩容,有效率的损耗,但是我们在学习了缺省参数后我们可以这么写:
// 栈顶
void STInit(ST* ps, int n = 4)
{assert(ps);ps->a = (STDataType*)malloc(n * sizeof(STDataType));ps->top = 0;ps->capacity = n;
}
void STPush(ST* ps, STDataType x)
{assert(ps);// 满了, 扩容if (ps->top == ps->capacity){printf("扩容\n");int newcapacity = ps->capacity == 0 ? 4 : ps->capacity* 2;STDataType* tmp = (STDataType*)realloc(ps->a,newcapacity * sizeof(STDataType));if (tmp == NULL){perror("realloc fail");return;}ps->a = tmp;ps->capacity = newcapacity;}ps->a[ps->top] = x;ps->top++;
}
int main()
{ST a;STInit(&a, 100);//这里不传100也可以,因为规定必须从左到右依次给实参,不能跳跃给实参。刚好和缺省参数确定位置互补for (int i = 0; i < 100; i++){STPush(&a, i);}return 0;
}
这样就有效避免了重复开辟空间的问题。
四、函数重载
C++支持持在同⼀作用域中出现同名函数,但是要求这些同名函数的形参不同,可以是参数个数不同或者
类型不同。这样C++函数调用就表现出了多态行为,使用更灵活。(但是返回值不同不能作为重载条件,
因为调用时也无法区分,如果返回值和参数类型或者个数同时变化则也为重载条件)。
1、参数类型不同
#include<iostream>
using namespace std;
// 1、参数类型不同
int Add(int left, int right)
{cout << "int Add(int left, int right)" << endl;return left + right;
}
double Add(double left, double right)
{cout << "double Add(double left, double right)" << endl;return left + right;
}
2、参数个数不同
// 2、参数个数不同
void f()
{cout << "f()" << endl;
}
void f(int a)
{cout << "f(int a)" << endl;
}
特别的如果上面的用缺省参数那么在不传参数调用时就会报错,编译器不知道调用谁
// 下⾯两个函数构成重载
// f()但是调⽤时,会报错,存在歧义,编译器不知道调⽤谁
void f1()
{cout << "f()" << endl;
}
void f1(int a = 10)
{cout << "f(int a)" << endl;
}
3、参数顺序不同(实际上就是参数类型不同)
// 3、参数类型顺序不同
void f(int a, char b)
{cout << "f(int a,char b)" << endl;
}
void f(char b, int a)
{cout << "f(char b, int a)" << endl;
}
#include<iostream>
using namespace std;
// 1、参数类型不同
int Add(int left, int right)
{cout << "int Add(int left, int right)" << endl;return left + right;
}
double Add(double left, double right)
{cout << "double Add(double left, double right)" << endl;return left + right;
}
// 2、参数个数不同
void f()
{cout << "f()" << endl;
}
void f(int a)
{cout << "f(int a)" << endl;
}
void f(int a, char b)
{cout << "f(int a,char b)" << endl;
}
void f(char b, int a)
{cout << "f(char b, int a)" << endl;
}
int main()
{Add(10, 20);Add(10.1, 20.2);f();f(10);f(10, 'a');f('a', 10);return 0;
}
`#include<iostream>
using namespace std;
// 1、参数类型不同
int Add(int left, int right)
{cout << "int Add(int left, int right)" << endl;return left + right;
}
double Add(double left, double right)
{cout << "double Add(double left, double right)" << endl;return left + right;
}
// 2、参数个数不同
void f()
{cout << "f()" << endl;
}
void f(int a)
{cout << "f(int a)" << endl;
}
void f(int a, char b)
{cout << "f(int a,char b)" << endl;
}
void f(char b, int a)
{cout << "f(char b, int a)" << endl;
}
int main()
{Add(10, 20);Add(10.1, 20.2);f();f(10);f(10, 'a');f('a', 10);return 0;
}``
结果:

相关文章:
初识c++(命名空间,缺省参数,函数重载)
一、命名空间 1、namespace的意义 在C/C中,变量、函数和后面要学到的类都是大量存在的,这些变量、函数和类的名称将都存在于全 局作用域中,可能会导致很多冲突。使用命名空间的目的是对标识符的名称进行本地化,以避免命名 冲突…...
印尼Facebook直播网络需要达到什么要求?
在全球化浪潮的推动下,海外直播正受到企业、个人和机构的广泛关注和青睐。无论是用于营销、推广还是互动,海外直播为各种组织提供了更多机会和可能性。本文将探讨在进行印尼Facebook直播前,需要满足哪些网络条件以确保直播的质量和用户体验。…...
力扣题解(最长回文子串)
5. 最长回文子串 给你一个字符串 s,找到 s 中最长的 回文子串 。思路: 对于第i个字符,可能的回文子串构成方式有两种,一种是以i位置元素为中心元素,向着两边扩展,一种是以i位置和i1位置元素为中心…...
数据湖表格式 Hudi/Iceberg/DeltaLake/Paimon TPCDS 性能对比(Spark 引擎)
当前,业界流行的集中数据湖表格式 Hudi/Iceberg/DeltaLake,和最近出现并且在国内比较火的 Paimon。我们现在看到的很多是针对流处理场景的读写性能测试,那么本篇文章我们将回归到大数据最基础的场景,对海量数据的批处理查询。本文…...
脚本练习-每5分钟执行一次获取当前服务器的基本情况
设计一个shell程序,每5分钟执行一次获取当前服务器的基本情况(内存使用率,CPU负载,I/O,磁盘使用率),保存到120.20.20.20数据库上数据库帐号aaa密码bbb库名test表名host 创建一个名为server_stat…...
技术探索之kotlin浅谈
Kotlin是一种静态类型编程语言,它运行在Java虚拟机(JVM)上,可以与Java代码互操作。Kotlin由JetBrains开发,是一种现代、简洁且安全的编程语言。它在2011年首次亮相,2017年被谷歌宣布为Android官方开发语言。…...
机器学习之常用优化器
机器学习之常用优化器 1、SGD 优化器1.2、 SGD 的优缺点 2、 Adam 优化器2.1、设置 Adam 优化器2.2、使用 Adam 优化器的训练流程2.3、Adam 优化器的优缺点 3. AdamW 优化器3.1、示例3.2、训练过程3.3、AdamW 优化器的优点 1、SGD 优化器 在 PyTorch 中,设置 SGD 优…...
机器学习基本概念,Numpy,matplotlib和张量Tensor知识进一步学习
机器学习一些基本概念: 监督学习 监督学习是机器学习中最常见的形式之一,它涉及到使用带标签的数据集来训练模型。这意味着每条训练数据都包含输入特征和对应的输出标签。目标是让模型学会从输入到输出的映射,这样当给出新的未见过的输入时…...
博客前端项目学习day01
这里写自定义目录标题 登录创建项目配置环境变量,方便使用登录页面验证码登陆表单 在VScode上写前端,采用vue3。 登录 创建项目 检查node版本 node -v 创建一个新的项目 npm init vitelatest blog-front-admin 中间会弹出询问是否要安装包,…...
java Collections.synchronizedCollection方法介绍
Collections.synchronizedCollection 是 Java 中的一个实用方法,用于创建一个线程安全的集合。它通过包装现有的集合对象来实现线程安全,以确保在多线程环境中对集合的访问是安全的。 主要功能 线程安全:通过同步包装现有的集合,使得在多线程环境中对集合的所有访问(包括…...
力扣每日一题:3011. 判断一个数组是否可以变为有序
力扣官网:前往作答!!!! 今日份每日一题: 题目要求: 给你一个下标从 0 开始且全是 正 整数的数组 nums 。 一次 操作 中,如果两个 相邻 元素在二进制下数位为 1 的数目 相同 &…...
ubuntu 上vscode +cmake的debug调试配置方法
在ubuntu配置pcl点云库以及opencv库的时候,需要在CMakeLists.txt中加入相应的代码。配置完成后,无法调试,与在windows上体验vs studio差别有点大。 找了好多调试debug配置方法,最终能用的有几种,但是有一种特别好用&a…...
使用Redis实现签到功能:Java示例解析
使用Redis实现签到功能:Java示例解析 在本博客中,我们将讨论一个使用Redis实现的签到功能的Java示例。该示例包括两个主要方法:sign()和signCount(),分别用于用户签到和计算用户当月的签到次数。 1. 签到方法:sign()…...
tableau标靶图,甘特图与瀑布图绘制 - 9
标靶图,甘特图与瀑布图 1. 标靶图绘制1.1 筛选器筛选日期1.2 条形图绘制1.3 编辑参考线1.4 设置参考线1.5 设置参考区间1.6 四分位设置1.7 其他标靶图结果显示 2.甘特图绘制2.1 选择列属性2.2 选择列属性2.3 创建新字段2.4 设置天数大小及颜色 3. 瀑布图绘制3.1 she…...
双向链表专题
在之前的单链表专题中,了解的单链表的结构是如何实现的,以及学习了如何实现单链表得各个功能。单链表虽然也能实现数据的增、删、查、改等功能,但是要找到尾节点或者是要找到指定位置之前的节点时,还是需要遍历链表,这…...
SpringCoud组件
一、使用SpringCloudAlibaba <dependencyManagement><dependencies><dependency><groupId>com.alibaba.cloud</groupId><artifactId>spring-cloud-alibaba-dependencies</artifactId><version>2023.0.1.0</version><…...
向量的定义和解释
这是一个向量: 向量具有大小(大小)和方向: 线的长度显示其大小,箭头指向方向。 在这里玩一个: 我们可以通过将它们从头到尾连接来添加两个向量: 无论我们添加它们的顺序如何,我们都…...
IoTDB 集群高效管理:一键启停功能介绍
如何快速启动、停止 IoTDB 集群节点的功能详解! 在部署 IoTDB 集群时,对于基础的单机模式,启动过程相对简单,仅需执行 start-standalone 脚本来启动 1 个 ConfigNode 节点和 1 个 DataNode 节点。然而,对于更高级的分布…...
一个spring boot项目的启动过程分析
1、web.xml 定义入口类 <context-param><param-name>contextConfigLocation</param-name><param-value>com.baosight.ApplicationBoot</param-value> </context-param> 2、主入口类: ApplicationBoot,SpringBoot项目的mian函数 SpringBo…...
智驭未来:人工智能与目标检测的深度交融
在科技日新月异的今天,人工智能(AI)如同一股不可阻挡的浪潮,正以前所未有的速度重塑着我们的世界。在众多AI应用领域中,目标检测以其独特的魅力和广泛的应用前景,成为了连接现实与智能世界的桥梁。本文旨在…...
【杂谈】-递归进化:人工智能的自我改进与监管挑战
递归进化:人工智能的自我改进与监管挑战 文章目录 递归进化:人工智能的自我改进与监管挑战1、自我改进型人工智能的崛起2、人工智能如何挑战人类监管?3、确保人工智能受控的策略4、人类在人工智能发展中的角色5、平衡自主性与控制力6、总结与…...
iOS 26 携众系统重磅更新,但“苹果智能”仍与国行无缘
美国西海岸的夏天,再次被苹果点燃。一年一度的全球开发者大会 WWDC25 如期而至,这不仅是开发者的盛宴,更是全球数亿苹果用户翘首以盼的科技春晚。今年,苹果依旧为我们带来了全家桶式的系统更新,包括 iOS 26、iPadOS 26…...
《Qt C++ 与 OpenCV:解锁视频播放程序设计的奥秘》
引言:探索视频播放程序设计之旅 在当今数字化时代,多媒体应用已渗透到我们生活的方方面面,从日常的视频娱乐到专业的视频监控、视频会议系统,视频播放程序作为多媒体应用的核心组成部分,扮演着至关重要的角色。无论是在个人电脑、移动设备还是智能电视等平台上,用户都期望…...
最新SpringBoot+SpringCloud+Nacos微服务框架分享
文章目录 前言一、服务规划二、架构核心1.cloud的pom2.gateway的异常handler3.gateway的filter4、admin的pom5、admin的登录核心 三、code-helper分享总结 前言 最近有个活蛮赶的,根据Excel列的需求预估的工时直接打骨折,不要问我为什么,主要…...
04-初识css
一、css样式引入 1.1.内部样式 <div style"width: 100px;"></div>1.2.外部样式 1.2.1.外部样式1 <style>.aa {width: 100px;} </style> <div class"aa"></div>1.2.2.外部样式2 <!-- rel内表面引入的是style样…...
Maven 概述、安装、配置、仓库、私服详解
目录 1、Maven 概述 1.1 Maven 的定义 1.2 Maven 解决的问题 1.3 Maven 的核心特性与优势 2、Maven 安装 2.1 下载 Maven 2.2 安装配置 Maven 2.3 测试安装 2.4 修改 Maven 本地仓库的默认路径 3、Maven 配置 3.1 配置本地仓库 3.2 配置 JDK 3.3 IDEA 配置本地 Ma…...
学校时钟系统,标准考场时钟系统,AI亮相2025高考,赛思时钟系统为教育公平筑起“精准防线”
2025年#高考 将在近日拉开帷幕,#AI 监考一度冲上热搜。当AI深度融入高考,#时间同步 不再是辅助功能,而是决定AI监考系统成败的“生命线”。 AI亮相2025高考,40种异常行为0.5秒精准识别 2025年高考即将拉开帷幕,江西、…...
【数据分析】R版IntelliGenes用于生物标志物发现的可解释机器学习
禁止商业或二改转载,仅供自学使用,侵权必究,如需截取部分内容请后台联系作者! 文章目录 介绍流程步骤1. 输入数据2. 特征选择3. 模型训练4. I-Genes 评分计算5. 输出结果 IntelliGenesR 安装包1. 特征选择2. 模型训练和评估3. I-Genes 评分计…...
Pinocchio 库详解及其在足式机器人上的应用
Pinocchio 库详解及其在足式机器人上的应用 Pinocchio (Pinocchio is not only a nose) 是一个开源的 C 库,专门用于快速计算机器人模型的正向运动学、逆向运动学、雅可比矩阵、动力学和动力学导数。它主要关注效率和准确性,并提供了一个通用的框架&…...
Linux C语言网络编程详细入门教程:如何一步步实现TCP服务端与客户端通信
文章目录 Linux C语言网络编程详细入门教程:如何一步步实现TCP服务端与客户端通信前言一、网络通信基础概念二、服务端与客户端的完整流程图解三、每一步的详细讲解和代码示例1. 创建Socket(服务端和客户端都要)2. 绑定本地地址和端口&#x…...
