当前位置: 首页 > news >正文

【深度学习】PyTorch深度学习笔记02-线性模型

1. 监督学习

2. 数据集的划分

3. 平均平方误差MSE

4. 线性模型Linear Model - y = x * w

用穷举法确定线性模型的参数

import numpy as np
import matplotlib.pyplot as pltx_data = [1.0, 2.0, 3.0]
y_data = [2.0, 4.0, 6.0]def forward(x):return x * wdef loss(x, y):y_pred = forward(x)return (y_pred - y) * (y_pred - y)w_list = []
mse_list = []for w in np.arange(0.0, 4.0, 0.1):print('w=', w)l_sum = 0for x_val, y_val in zip(x_data, y_data):  y_pred_val = forward(x_val)loss_val = loss(x_val, y_val)  l_sum += loss_valprint('\t', x_val, y_val, y_pred_val, loss_val)print('MSE=', l_sum / len(x_data))  w_list.append(w)mse_list.append(l_sum / len(x_data))plt.plot(w_list, mse_list)
plt.ylabel('Loss')
plt.xlabel('w')
plt.show()

详细过程

    本课程的主要任务是构建一个完整的线性模型:
        导入numpy和matplotlib库;
        导入数据 x_data 和 y_data;
        定义前向传播函数:
            forward:输出是预测值y_hat
        定义损失函数:
            loss:平方误差
        创建两个空列表,后面绘图的时候要用:
            分别是横轴的w_list和纵轴的mse_list
        开始计算(这里没有训练的概念,只是单纯的计算每一个数据对应的预测值,然后让预测值跟真实y值求MSE):
            外层循环:
                在0.0~4.0之间均匀取点,步长0.1,作为n个横坐标自变量,用w表示;
            内层循环:核心计算内容
                从数据集中,按数据对取出自变量x_val和真实值y_val;
                先调用forward函数,计算y的预测值 w*x
                调用loss函数,计算单个数据的平方误差;
                累加损失;
                打印想要看到的数值;
                在外层循环中,把计算的结果放进之前的空列表,用于绘图;
    在获得了打印所需的数据列表之后,模式化地打印图像:

运行结果

ps:

visdom库可用于可视化

np.meshgrid()可用于绘制三维图

5. 线性模型Linear Model - y = x * w + b

有w,b两个参数,穷举最小值

import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3Dx_data = [1.0, 2.0, 3.0]
y_data = [3.0, 4.0, 6.0]def forward(x, w, b):return x * w + bdef loss(x, y, w, b):y_pred = forward(x, w, b)loss = (y_pred - y) * (y_pred - y)return lossw_list = np.arange(0.0, 4.1, 0.1)
b_list = np.arange(-2.0, 2.1, 0.1)# np.zeros(): 返回给定维度的全零数组; mse_matrix用于存储不同 w,b 组合下的均方误差损失
mse_matrix = np.zeros((len(w_list), len(b_list)))for i, w in enumerate(w_list):for j, b in enumerate(b_list):l_sum = 0for x_val, y_val in zip(x_data, y_data):l_sum += loss(x_val, y_val, w, b)mse_matrix[i, j] = l_sum / len(x_data)W, B = np.meshgrid(w_list, b_list)
fig = plt.figure('Linear Model Cost Value')
ax = fig.add_subplot(111, projection='3d')
ax.plot_surface(W, B, mse_matrix.T, cmap='viridis')
ax.set_xlabel('w')
ax.set_ylabel('b')
ax.set_zlabel('loss')
plt.show()

可以得出,穷举法算法的时间复杂度 随着参数的个数增大 而变得很大,因此使用穷举法找到最优解,很不合理。

相关文章:

【深度学习】PyTorch深度学习笔记02-线性模型

1. 监督学习 2. 数据集的划分 3. 平均平方误差MSE 4. 线性模型Linear Model - y x * w 用穷举法确定线性模型的参数 import numpy as np import matplotlib.pyplot as pltx_data [1.0, 2.0, 3.0] y_data [2.0, 4.0, 6.0]def forward(x):return x * wdef loss(x, y):y_pred…...

10.FreeRTOS_互斥量

互斥量概述 在博文“ FreeRTOS_信号量 ”中,使用了二进制信号量实现了互斥,保护了串口资源。博文链接如下: FreeRTOS_信号量-CSDN博客 但还是要引入互斥量的概念。互斥量与二进制信号量相比,能够多实现如下两个功能&#xff1a…...

EtherCAT总线冗余让制造更安全更可靠更智能

冗余定义 什么是总线冗余功能?我们都知道,EtherCAT现场总线具有灵活的拓扑结构,设备间支持线型、星型、树型的连接方式,其中线型结构简单、传输效率高,大多数的现场应用中也是使用这种连接方式,如下图所示…...

Android IdleHandler源码分析

文章目录 Android IdleHandler源码分析概述前提基本用法源码分析添加和删除任务执行任务 应用场景 Android IdleHandler源码分析 概述 IdleHandler是一个接口,它定义在MessageQueue类中,用于在主线程的消息队列空闲时执行一些轻量级的任务。IdleHandle…...

Mac安装stable diffusion 工具

文章目录 1.安装 Homebrew2.安装 stable diffusion webui 的依赖3.下载 stable diffusion webui 代码4.启动 stable diffusion webui 本体5.下载模型6.这里可能会遇到一个clip-vit-large-patch14报错 参考:https://brew.idayer.com/install/stable-diffusion-webui/…...

CVE-2024-6387Open SSH漏洞彻底解决举措(含踩坑内容)

一、漏洞名称 OpenSSH 远程代码执行漏洞(CVE-2024-6387) 二、漏洞概述 Open SSH是基于SSH协议的安全网络通信工具,广泛应用于远程服务器管理、加密文件传输、端口转发、远程控制等多个领域。近日被爆出存在一个远程代码执行漏洞,由于Open SSH服务器端…...

python的简单爬取

需要的第三方模块 requests winr打开命令行输入cmd 简单爬取的基本格式(爬取百度logo为例) import requests url"http://www.baidu.com/img/PCtm_d9c8750bed0b3c7d089fa7d55720d6cf.png" resprequests.get(url)#回应 #保存到本地 with open(&…...

【WEB前端2024】3D智体编程:乔布斯3D纪念馆-第60集-agent训练资讯APP重点推荐AI资讯内容(含视频)

【WEB前端2024】3D智体编程:乔布斯3D纪念馆-第60集-agent训练资讯APP重点推荐AI资讯内容(含视频) 使用dtns.network德塔世界(开源的智体世界引擎),策划和设计《乔布斯超大型的开源3D纪念馆》的系列教程。d…...

【学术会议征稿】第三届智能电网与能源系统国际学术会议

第三届智能电网与能源系统国际学术会议 2024 3rd International Conference on Smart Grid and Energy Systems 第三届智能电网与能源系统国际学术会议(SGES 2024)将于2024年10月25日-27日在郑州召开。 智能电网可以优化能源布局,让现有能源…...

01. 课程简介

1. 课程简介 本课程的核心内容可以分为三个部分,分别是需要理解记忆的计算机底层基础,后端通用组件以及需要不断编码练习的数据结构和算法。 计算机底层基础可以包含计算机网络、操作系统、编译原理、计算机组成原理,后两者在面试中出现的频…...

iOS热门面试题(三)

面试题1:在iOS开发中,什么是MVC设计模式?请详细解释其各个组成部分,并给出一个实际应用场景,包括具体的代码实现。 答案: MVC设计模式是一种在软件开发中广泛使用的架构模式,特别是在iOS开发中…...

ECS中postTransform.Value = float4x4.Scale(1, math.sin(elapsedTime), 1)

在Unity的ECS(Entity Component System)架构中,postTransform.Value float4x4.Scale(1, math.sin(elapsedTime), 1); 用于设置一个变换矩阵的缩放部分。下面是对这行代码的详细解释: postTransform: 这是一个表示变换的组件或结构…...

VLM技术介绍

1、背景 视觉语言模型(Visual Language Models)是可以同时从图像和文本中学习以处理许多任务的模型,从视觉问答到图像字幕。 视觉识别(如图像分类、物体保护和语义分割)是计算机视觉研究中一个长期存在的难题&#xff…...

x264 编码器 AArch64 汇编函数模块关系分析

x264 编码器 AArch64 汇编介绍 x264 是一个流行的开源视频编码器,它实现了 H.264/MPEG-4 AVC 标准。x264 项目致力于提供一个高性能、高质量的编码器,支持多种平台和架构。对于 AArch64(即 64 位 ARM 架构),x264 编码器利用该架构的特性来优化编码过程。在 x264 编码器中,…...

windows10开启防火墙,增加入站规则后不生效,还是不能访问后端程序

一、背景: 公司护网要求开启防火墙,开启防火墙后,前后端分离的项目调试受影响,于是增加入站规则开放固定的后台服务端口,增加的mysql端口3306和redis端口6379,别人都可以访问,但是程序的端口808…...

academic-homepage:快速搭建个人学术主页,页面内容包括个人简介、教育经历、发布过的学术列表等,同时页面布局兼容移动端。

今天给大家分享GitHub 上一个开源的 GitHub Pages 模板 academic-homepage。 可帮助你快速搭建个人学术主页,页面内容包括个人简介、教育经历、发布过的学术列表等最基本内容,同时页面布局兼容移动端。 相关链接 github.com/luost26/academic-homepage …...

.env.development、.env.production、.env.staging

环境变量文件(如 .env.development、.env.production、.env.staging)用于根据不同的环境(开发、生产、测试等)配置应用程序的行为。 作用 .env.development:用于开发环境的配置。开发人员在本地开发时会使用这个文件…...

国密证书(gmssl)在Kylin Server V10下安装

1.查看操作系统信息 [root@localhost ~]# cat /etc/.kyinfo [dist] name=Kylin milestone=Server-V10-GFB-Release-ZF9_01-2204-Build03 arch=arm64 beta=False time=2023-01-09 11:04:36 dist_id=Kylin-Server-V10-GFB-Release-ZF9_01-2204-Build03-arm64-2023-01-09 11:04:…...

【数据服务篇】法律快车问答数据:为法律智能化铺就道路

数据来源 法律快车汇集了广泛的法律问题和专业律师的回答,这些来自用户和律师的数据构成了丰富的问答资源。用户通过平台提交各类法律疑问,得到资深律师的详尽解答,形成了一系列真实、多样化的法律案例和讨论。 数据获取见文末。 数据内容…...

各向异性含水层中地下水三维流基本微分方程的推导(二)

各向异性含水层中地下水三维流基本微分方程的推导 参考文献: [1] 刘欣怡,付小莉.论连续性方程的推导及几种形式转换的方法[J].力学与实践,2023,45(02):469-474. 书接上回: 我们能得到三个方向的流入流出平衡方程: ∂ ρ u x ∂ x d x d y d…...

测试微信模版消息推送

进入“开发接口管理”--“公众平台测试账号”,无需申请公众账号、可在测试账号中体验并测试微信公众平台所有高级接口。 获取access_token: 自定义模版消息: 关注测试号:扫二维码关注测试号。 发送模版消息: import requests da…...

从零实现富文本编辑器#5-编辑器选区模型的状态结构表达

先前我们总结了浏览器选区模型的交互策略,并且实现了基本的选区操作,还调研了自绘选区的实现。那么相对的,我们还需要设计编辑器的选区表达,也可以称为模型选区。编辑器中应用变更时的操作范围,就是以模型选区为基准来…...

使用分级同态加密防御梯度泄漏

抽象 联邦学习 (FL) 支持跨分布式客户端进行协作模型训练,而无需共享原始数据,这使其成为在互联和自动驾驶汽车 (CAV) 等领域保护隐私的机器学习的一种很有前途的方法。然而,最近的研究表明&…...

YSYX学习记录(八)

C语言&#xff0c;练习0&#xff1a; 先创建一个文件夹&#xff0c;我用的是物理机&#xff1a; 安装build-essential 练习1&#xff1a; 我注释掉了 #include <stdio.h> 出现下面错误 在你的文本编辑器中打开ex1文件&#xff0c;随机修改或删除一部分&#xff0c;之后…...

【CSS position 属性】static、relative、fixed、absolute 、sticky详细介绍,多层嵌套定位示例

文章目录 ★ position 的五种类型及基本用法 ★ 一、position 属性概述 二、position 的五种类型详解(初学者版) 1. static(默认值) 2. relative(相对定位) 3. absolute(绝对定位) 4. fixed(固定定位) 5. sticky(粘性定位) 三、定位元素的层级关系(z-i…...

【android bluetooth 框架分析 04】【bt-framework 层详解 1】【BluetoothProperties介绍】

1. BluetoothProperties介绍 libsysprop/srcs/android/sysprop/BluetoothProperties.sysprop BluetoothProperties.sysprop 是 Android AOSP 中的一种 系统属性定义文件&#xff08;System Property Definition File&#xff09;&#xff0c;用于声明和管理 Bluetooth 模块相…...

unix/linux,sudo,其发展历程详细时间线、由来、历史背景

sudo 的诞生和演化,本身就是一部 Unix/Linux 系统管理哲学变迁的微缩史。来,让我们拨开时间的迷雾,一同探寻 sudo 那波澜壮阔(也颇为实用主义)的发展历程。 历史背景:su的时代与困境 ( 20 世纪 70 年代 - 80 年代初) 在 sudo 出现之前,Unix 系统管理员和需要特权操作的…...

CRMEB 框架中 PHP 上传扩展开发:涵盖本地上传及阿里云 OSS、腾讯云 COS、七牛云

目前已有本地上传、阿里云OSS上传、腾讯云COS上传、七牛云上传扩展 扩展入口文件 文件目录 crmeb\services\upload\Upload.php namespace crmeb\services\upload;use crmeb\basic\BaseManager; use think\facade\Config;/*** Class Upload* package crmeb\services\upload* …...

Spring AI与Spring Modulith核心技术解析

Spring AI核心架构解析 Spring AI&#xff08;https://spring.io/projects/spring-ai&#xff09;作为Spring生态中的AI集成框架&#xff0c;其核心设计理念是通过模块化架构降低AI应用的开发复杂度。与Python生态中的LangChain/LlamaIndex等工具类似&#xff0c;但特别为多语…...

如何理解 IP 数据报中的 TTL?

目录 前言理解 前言 面试灵魂一问&#xff1a;说说对 IP 数据报中 TTL 的理解&#xff1f;我们都知道&#xff0c;IP 数据报由首部和数据两部分组成&#xff0c;首部又分为两部分&#xff1a;固定部分和可变部分&#xff0c;共占 20 字节&#xff0c;而即将讨论的 TTL 就位于首…...