【深度学习】PyTorch深度学习笔记02-线性模型
1. 监督学习

2. 数据集的划分

3. 平均平方误差MSE

4. 线性模型Linear Model - y = x * w
用穷举法确定线性模型的参数
import numpy as np
import matplotlib.pyplot as pltx_data = [1.0, 2.0, 3.0]
y_data = [2.0, 4.0, 6.0]def forward(x):return x * wdef loss(x, y):y_pred = forward(x)return (y_pred - y) * (y_pred - y)w_list = []
mse_list = []for w in np.arange(0.0, 4.0, 0.1):print('w=', w)l_sum = 0for x_val, y_val in zip(x_data, y_data): y_pred_val = forward(x_val)loss_val = loss(x_val, y_val) l_sum += loss_valprint('\t', x_val, y_val, y_pred_val, loss_val)print('MSE=', l_sum / len(x_data)) w_list.append(w)mse_list.append(l_sum / len(x_data))plt.plot(w_list, mse_list)
plt.ylabel('Loss')
plt.xlabel('w')
plt.show()
详细过程
本课程的主要任务是构建一个完整的线性模型:
导入numpy和matplotlib库;
导入数据 x_data 和 y_data;
定义前向传播函数:
forward:输出是预测值y_hat
定义损失函数:
loss:平方误差
创建两个空列表,后面绘图的时候要用:
分别是横轴的w_list和纵轴的mse_list
开始计算(这里没有训练的概念,只是单纯的计算每一个数据对应的预测值,然后让预测值跟真实y值求MSE):
外层循环:
在0.0~4.0之间均匀取点,步长0.1,作为n个横坐标自变量,用w表示;
内层循环:核心计算内容
从数据集中,按数据对取出自变量x_val和真实值y_val;
先调用forward函数,计算y的预测值 w*x
调用loss函数,计算单个数据的平方误差;
累加损失;
打印想要看到的数值;
在外层循环中,把计算的结果放进之前的空列表,用于绘图;
在获得了打印所需的数据列表之后,模式化地打印图像:
运行结果
ps:
visdom库可用于可视化
np.meshgrid()可用于绘制三维图
5. 线性模型Linear Model - y = x * w + b
有w,b两个参数,穷举最小值
import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3Dx_data = [1.0, 2.0, 3.0]
y_data = [3.0, 4.0, 6.0]def forward(x, w, b):return x * w + bdef loss(x, y, w, b):y_pred = forward(x, w, b)loss = (y_pred - y) * (y_pred - y)return lossw_list = np.arange(0.0, 4.1, 0.1)
b_list = np.arange(-2.0, 2.1, 0.1)# np.zeros(): 返回给定维度的全零数组; mse_matrix用于存储不同 w,b 组合下的均方误差损失
mse_matrix = np.zeros((len(w_list), len(b_list)))for i, w in enumerate(w_list):for j, b in enumerate(b_list):l_sum = 0for x_val, y_val in zip(x_data, y_data):l_sum += loss(x_val, y_val, w, b)mse_matrix[i, j] = l_sum / len(x_data)W, B = np.meshgrid(w_list, b_list)
fig = plt.figure('Linear Model Cost Value')
ax = fig.add_subplot(111, projection='3d')
ax.plot_surface(W, B, mse_matrix.T, cmap='viridis')
ax.set_xlabel('w')
ax.set_ylabel('b')
ax.set_zlabel('loss')
plt.show()

可以得出,穷举法算法的时间复杂度 随着参数的个数增大 而变得很大,因此使用穷举法找到最优解,很不合理。
相关文章:
【深度学习】PyTorch深度学习笔记02-线性模型
1. 监督学习 2. 数据集的划分 3. 平均平方误差MSE 4. 线性模型Linear Model - y x * w 用穷举法确定线性模型的参数 import numpy as np import matplotlib.pyplot as pltx_data [1.0, 2.0, 3.0] y_data [2.0, 4.0, 6.0]def forward(x):return x * wdef loss(x, y):y_pred…...
10.FreeRTOS_互斥量
互斥量概述 在博文“ FreeRTOS_信号量 ”中,使用了二进制信号量实现了互斥,保护了串口资源。博文链接如下: FreeRTOS_信号量-CSDN博客 但还是要引入互斥量的概念。互斥量与二进制信号量相比,能够多实现如下两个功能:…...
EtherCAT总线冗余让制造更安全更可靠更智能
冗余定义 什么是总线冗余功能?我们都知道,EtherCAT现场总线具有灵活的拓扑结构,设备间支持线型、星型、树型的连接方式,其中线型结构简单、传输效率高,大多数的现场应用中也是使用这种连接方式,如下图所示…...
Android IdleHandler源码分析
文章目录 Android IdleHandler源码分析概述前提基本用法源码分析添加和删除任务执行任务 应用场景 Android IdleHandler源码分析 概述 IdleHandler是一个接口,它定义在MessageQueue类中,用于在主线程的消息队列空闲时执行一些轻量级的任务。IdleHandle…...
Mac安装stable diffusion 工具
文章目录 1.安装 Homebrew2.安装 stable diffusion webui 的依赖3.下载 stable diffusion webui 代码4.启动 stable diffusion webui 本体5.下载模型6.这里可能会遇到一个clip-vit-large-patch14报错 参考:https://brew.idayer.com/install/stable-diffusion-webui/…...
CVE-2024-6387Open SSH漏洞彻底解决举措(含踩坑内容)
一、漏洞名称 OpenSSH 远程代码执行漏洞(CVE-2024-6387) 二、漏洞概述 Open SSH是基于SSH协议的安全网络通信工具,广泛应用于远程服务器管理、加密文件传输、端口转发、远程控制等多个领域。近日被爆出存在一个远程代码执行漏洞,由于Open SSH服务器端…...
python的简单爬取
需要的第三方模块 requests winr打开命令行输入cmd 简单爬取的基本格式(爬取百度logo为例) import requests url"http://www.baidu.com/img/PCtm_d9c8750bed0b3c7d089fa7d55720d6cf.png" resprequests.get(url)#回应 #保存到本地 with open(&…...
【WEB前端2024】3D智体编程:乔布斯3D纪念馆-第60集-agent训练资讯APP重点推荐AI资讯内容(含视频)
【WEB前端2024】3D智体编程:乔布斯3D纪念馆-第60集-agent训练资讯APP重点推荐AI资讯内容(含视频) 使用dtns.network德塔世界(开源的智体世界引擎),策划和设计《乔布斯超大型的开源3D纪念馆》的系列教程。d…...
【学术会议征稿】第三届智能电网与能源系统国际学术会议
第三届智能电网与能源系统国际学术会议 2024 3rd International Conference on Smart Grid and Energy Systems 第三届智能电网与能源系统国际学术会议(SGES 2024)将于2024年10月25日-27日在郑州召开。 智能电网可以优化能源布局,让现有能源…...
01. 课程简介
1. 课程简介 本课程的核心内容可以分为三个部分,分别是需要理解记忆的计算机底层基础,后端通用组件以及需要不断编码练习的数据结构和算法。 计算机底层基础可以包含计算机网络、操作系统、编译原理、计算机组成原理,后两者在面试中出现的频…...
iOS热门面试题(三)
面试题1:在iOS开发中,什么是MVC设计模式?请详细解释其各个组成部分,并给出一个实际应用场景,包括具体的代码实现。 答案: MVC设计模式是一种在软件开发中广泛使用的架构模式,特别是在iOS开发中…...
ECS中postTransform.Value = float4x4.Scale(1, math.sin(elapsedTime), 1)
在Unity的ECS(Entity Component System)架构中,postTransform.Value float4x4.Scale(1, math.sin(elapsedTime), 1); 用于设置一个变换矩阵的缩放部分。下面是对这行代码的详细解释: postTransform: 这是一个表示变换的组件或结构…...
VLM技术介绍
1、背景 视觉语言模型(Visual Language Models)是可以同时从图像和文本中学习以处理许多任务的模型,从视觉问答到图像字幕。 视觉识别(如图像分类、物体保护和语义分割)是计算机视觉研究中一个长期存在的难题ÿ…...
x264 编码器 AArch64 汇编函数模块关系分析
x264 编码器 AArch64 汇编介绍 x264 是一个流行的开源视频编码器,它实现了 H.264/MPEG-4 AVC 标准。x264 项目致力于提供一个高性能、高质量的编码器,支持多种平台和架构。对于 AArch64(即 64 位 ARM 架构),x264 编码器利用该架构的特性来优化编码过程。在 x264 编码器中,…...
windows10开启防火墙,增加入站规则后不生效,还是不能访问后端程序
一、背景: 公司护网要求开启防火墙,开启防火墙后,前后端分离的项目调试受影响,于是增加入站规则开放固定的后台服务端口,增加的mysql端口3306和redis端口6379,别人都可以访问,但是程序的端口808…...
academic-homepage:快速搭建个人学术主页,页面内容包括个人简介、教育经历、发布过的学术列表等,同时页面布局兼容移动端。
今天给大家分享GitHub 上一个开源的 GitHub Pages 模板 academic-homepage。 可帮助你快速搭建个人学术主页,页面内容包括个人简介、教育经历、发布过的学术列表等最基本内容,同时页面布局兼容移动端。 相关链接 github.com/luost26/academic-homepage …...
.env.development、.env.production、.env.staging
环境变量文件(如 .env.development、.env.production、.env.staging)用于根据不同的环境(开发、生产、测试等)配置应用程序的行为。 作用 .env.development:用于开发环境的配置。开发人员在本地开发时会使用这个文件…...
国密证书(gmssl)在Kylin Server V10下安装
1.查看操作系统信息 [root@localhost ~]# cat /etc/.kyinfo [dist] name=Kylin milestone=Server-V10-GFB-Release-ZF9_01-2204-Build03 arch=arm64 beta=False time=2023-01-09 11:04:36 dist_id=Kylin-Server-V10-GFB-Release-ZF9_01-2204-Build03-arm64-2023-01-09 11:04:…...
【数据服务篇】法律快车问答数据:为法律智能化铺就道路
数据来源 法律快车汇集了广泛的法律问题和专业律师的回答,这些来自用户和律师的数据构成了丰富的问答资源。用户通过平台提交各类法律疑问,得到资深律师的详尽解答,形成了一系列真实、多样化的法律案例和讨论。 数据获取见文末。 数据内容…...
各向异性含水层中地下水三维流基本微分方程的推导(二)
各向异性含水层中地下水三维流基本微分方程的推导 参考文献: [1] 刘欣怡,付小莉.论连续性方程的推导及几种形式转换的方法[J].力学与实践,2023,45(02):469-474. 书接上回: 我们能得到三个方向的流入流出平衡方程: ∂ ρ u x ∂ x d x d y d…...
AI-调查研究-01-正念冥想有用吗?对健康的影响及科学指南
点一下关注吧!!!非常感谢!!持续更新!!! 🚀 AI篇持续更新中!(长期更新) 目前2025年06月05日更新到: AI炼丹日志-28 - Aud…...
23-Oracle 23 ai 区块链表(Blockchain Table)
小伙伴有没有在金融强合规的领域中遇见,必须要保持数据不可变,管理员都无法修改和留痕的要求。比如医疗的电子病历中,影像检查检验结果不可篡改行的,药品追溯过程中数据只可插入无法删除的特性需求;登录日志、修改日志…...
HTML 列表、表格、表单
1 列表标签 作用:布局内容排列整齐的区域 列表分类:无序列表、有序列表、定义列表。 例如: 1.1 无序列表 标签:ul 嵌套 li,ul是无序列表,li是列表条目。 注意事项: ul 标签里面只能包裹 li…...
使用van-uploader 的UI组件,结合vue2如何实现图片上传组件的封装
以下是基于 vant-ui(适配 Vue2 版本 )实现截图中照片上传预览、删除功能,并封装成可复用组件的完整代码,包含样式和逻辑实现,可直接在 Vue2 项目中使用: 1. 封装的图片上传组件 ImageUploader.vue <te…...
拉力测试cuda pytorch 把 4070显卡拉满
import torch import timedef stress_test_gpu(matrix_size16384, duration300):"""对GPU进行压力测试,通过持续的矩阵乘法来最大化GPU利用率参数:matrix_size: 矩阵维度大小,增大可提高计算复杂度duration: 测试持续时间(秒&…...
Android15默认授权浮窗权限
我们经常有那种需求,客户需要定制的apk集成在ROM中,并且默认授予其【显示在其他应用的上层】权限,也就是我们常说的浮窗权限,那么我们就可以通过以下方法在wms、ams等系统服务的systemReady()方法中调用即可实现预置应用默认授权浮…...
iOS性能调优实战:借助克魔(KeyMob)与常用工具深度洞察App瓶颈
在日常iOS开发过程中,性能问题往往是最令人头疼的一类Bug。尤其是在App上线前的压测阶段或是处理用户反馈的高发期,开发者往往需要面对卡顿、崩溃、能耗异常、日志混乱等一系列问题。这些问题表面上看似偶发,但背后往往隐藏着系统资源调度不当…...
无人机侦测与反制技术的进展与应用
国家电网无人机侦测与反制技术的进展与应用 引言 随着无人机(无人驾驶飞行器,UAV)技术的快速发展,其在商业、娱乐和军事领域的广泛应用带来了新的安全挑战。特别是对于关键基础设施如电力系统,无人机的“黑飞”&…...
go 里面的指针
指针 在 Go 中,指针(pointer)是一个变量的内存地址,就像 C 语言那样: a : 10 p : &a // p 是一个指向 a 的指针 fmt.Println(*p) // 输出 10,通过指针解引用• &a 表示获取变量 a 的地址 p 表示…...
tauri项目,如何在rust端读取电脑环境变量
如果想在前端通过调用来获取环境变量的值,可以通过标准的依赖: std::env::var(name).ok() 想在前端通过调用来获取,可以写一个command函数: #[tauri::command] pub fn get_env_var(name: String) -> Result<String, Stri…...

