【深度学习】PyTorch深度学习笔记02-线性模型
1. 监督学习
2. 数据集的划分
3. 平均平方误差MSE
4. 线性模型Linear Model - y = x * w
用穷举法确定线性模型的参数
import numpy as np
import matplotlib.pyplot as pltx_data = [1.0, 2.0, 3.0]
y_data = [2.0, 4.0, 6.0]def forward(x):return x * wdef loss(x, y):y_pred = forward(x)return (y_pred - y) * (y_pred - y)w_list = []
mse_list = []for w in np.arange(0.0, 4.0, 0.1):print('w=', w)l_sum = 0for x_val, y_val in zip(x_data, y_data): y_pred_val = forward(x_val)loss_val = loss(x_val, y_val) l_sum += loss_valprint('\t', x_val, y_val, y_pred_val, loss_val)print('MSE=', l_sum / len(x_data)) w_list.append(w)mse_list.append(l_sum / len(x_data))plt.plot(w_list, mse_list)
plt.ylabel('Loss')
plt.xlabel('w')
plt.show()
详细过程
本课程的主要任务是构建一个完整的线性模型:
导入numpy和matplotlib库;
导入数据 x_data 和 y_data;
定义前向传播函数:
forward:输出是预测值y_hat
定义损失函数:
loss:平方误差
创建两个空列表,后面绘图的时候要用:
分别是横轴的w_list和纵轴的mse_list
开始计算(这里没有训练的概念,只是单纯的计算每一个数据对应的预测值,然后让预测值跟真实y值求MSE):
外层循环:
在0.0~4.0之间均匀取点,步长0.1,作为n个横坐标自变量,用w表示;
内层循环:核心计算内容
从数据集中,按数据对取出自变量x_val和真实值y_val;
先调用forward函数,计算y的预测值 w*x
调用loss函数,计算单个数据的平方误差;
累加损失;
打印想要看到的数值;
在外层循环中,把计算的结果放进之前的空列表,用于绘图;
在获得了打印所需的数据列表之后,模式化地打印图像:
运行结果
ps:
visdom库可用于可视化
np.meshgrid()可用于绘制三维图
5. 线性模型Linear Model - y = x * w + b
有w,b两个参数,穷举最小值
import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3Dx_data = [1.0, 2.0, 3.0]
y_data = [3.0, 4.0, 6.0]def forward(x, w, b):return x * w + bdef loss(x, y, w, b):y_pred = forward(x, w, b)loss = (y_pred - y) * (y_pred - y)return lossw_list = np.arange(0.0, 4.1, 0.1)
b_list = np.arange(-2.0, 2.1, 0.1)# np.zeros(): 返回给定维度的全零数组; mse_matrix用于存储不同 w,b 组合下的均方误差损失
mse_matrix = np.zeros((len(w_list), len(b_list)))for i, w in enumerate(w_list):for j, b in enumerate(b_list):l_sum = 0for x_val, y_val in zip(x_data, y_data):l_sum += loss(x_val, y_val, w, b)mse_matrix[i, j] = l_sum / len(x_data)W, B = np.meshgrid(w_list, b_list)
fig = plt.figure('Linear Model Cost Value')
ax = fig.add_subplot(111, projection='3d')
ax.plot_surface(W, B, mse_matrix.T, cmap='viridis')
ax.set_xlabel('w')
ax.set_ylabel('b')
ax.set_zlabel('loss')
plt.show()
可以得出,穷举法算法的时间复杂度 随着参数的个数增大 而变得很大,因此使用穷举法找到最优解,很不合理。
相关文章:

【深度学习】PyTorch深度学习笔记02-线性模型
1. 监督学习 2. 数据集的划分 3. 平均平方误差MSE 4. 线性模型Linear Model - y x * w 用穷举法确定线性模型的参数 import numpy as np import matplotlib.pyplot as pltx_data [1.0, 2.0, 3.0] y_data [2.0, 4.0, 6.0]def forward(x):return x * wdef loss(x, y):y_pred…...

10.FreeRTOS_互斥量
互斥量概述 在博文“ FreeRTOS_信号量 ”中,使用了二进制信号量实现了互斥,保护了串口资源。博文链接如下: FreeRTOS_信号量-CSDN博客 但还是要引入互斥量的概念。互斥量与二进制信号量相比,能够多实现如下两个功能:…...

EtherCAT总线冗余让制造更安全更可靠更智能
冗余定义 什么是总线冗余功能?我们都知道,EtherCAT现场总线具有灵活的拓扑结构,设备间支持线型、星型、树型的连接方式,其中线型结构简单、传输效率高,大多数的现场应用中也是使用这种连接方式,如下图所示…...
Android IdleHandler源码分析
文章目录 Android IdleHandler源码分析概述前提基本用法源码分析添加和删除任务执行任务 应用场景 Android IdleHandler源码分析 概述 IdleHandler是一个接口,它定义在MessageQueue类中,用于在主线程的消息队列空闲时执行一些轻量级的任务。IdleHandle…...

Mac安装stable diffusion 工具
文章目录 1.安装 Homebrew2.安装 stable diffusion webui 的依赖3.下载 stable diffusion webui 代码4.启动 stable diffusion webui 本体5.下载模型6.这里可能会遇到一个clip-vit-large-patch14报错 参考:https://brew.idayer.com/install/stable-diffusion-webui/…...

CVE-2024-6387Open SSH漏洞彻底解决举措(含踩坑内容)
一、漏洞名称 OpenSSH 远程代码执行漏洞(CVE-2024-6387) 二、漏洞概述 Open SSH是基于SSH协议的安全网络通信工具,广泛应用于远程服务器管理、加密文件传输、端口转发、远程控制等多个领域。近日被爆出存在一个远程代码执行漏洞,由于Open SSH服务器端…...

python的简单爬取
需要的第三方模块 requests winr打开命令行输入cmd 简单爬取的基本格式(爬取百度logo为例) import requests url"http://www.baidu.com/img/PCtm_d9c8750bed0b3c7d089fa7d55720d6cf.png" resprequests.get(url)#回应 #保存到本地 with open(&…...

【WEB前端2024】3D智体编程:乔布斯3D纪念馆-第60集-agent训练资讯APP重点推荐AI资讯内容(含视频)
【WEB前端2024】3D智体编程:乔布斯3D纪念馆-第60集-agent训练资讯APP重点推荐AI资讯内容(含视频) 使用dtns.network德塔世界(开源的智体世界引擎),策划和设计《乔布斯超大型的开源3D纪念馆》的系列教程。d…...

【学术会议征稿】第三届智能电网与能源系统国际学术会议
第三届智能电网与能源系统国际学术会议 2024 3rd International Conference on Smart Grid and Energy Systems 第三届智能电网与能源系统国际学术会议(SGES 2024)将于2024年10月25日-27日在郑州召开。 智能电网可以优化能源布局,让现有能源…...

01. 课程简介
1. 课程简介 本课程的核心内容可以分为三个部分,分别是需要理解记忆的计算机底层基础,后端通用组件以及需要不断编码练习的数据结构和算法。 计算机底层基础可以包含计算机网络、操作系统、编译原理、计算机组成原理,后两者在面试中出现的频…...
iOS热门面试题(三)
面试题1:在iOS开发中,什么是MVC设计模式?请详细解释其各个组成部分,并给出一个实际应用场景,包括具体的代码实现。 答案: MVC设计模式是一种在软件开发中广泛使用的架构模式,特别是在iOS开发中…...
ECS中postTransform.Value = float4x4.Scale(1, math.sin(elapsedTime), 1)
在Unity的ECS(Entity Component System)架构中,postTransform.Value float4x4.Scale(1, math.sin(elapsedTime), 1); 用于设置一个变换矩阵的缩放部分。下面是对这行代码的详细解释: postTransform: 这是一个表示变换的组件或结构…...

VLM技术介绍
1、背景 视觉语言模型(Visual Language Models)是可以同时从图像和文本中学习以处理许多任务的模型,从视觉问答到图像字幕。 视觉识别(如图像分类、物体保护和语义分割)是计算机视觉研究中一个长期存在的难题ÿ…...

x264 编码器 AArch64 汇编函数模块关系分析
x264 编码器 AArch64 汇编介绍 x264 是一个流行的开源视频编码器,它实现了 H.264/MPEG-4 AVC 标准。x264 项目致力于提供一个高性能、高质量的编码器,支持多种平台和架构。对于 AArch64(即 64 位 ARM 架构),x264 编码器利用该架构的特性来优化编码过程。在 x264 编码器中,…...

windows10开启防火墙,增加入站规则后不生效,还是不能访问后端程序
一、背景: 公司护网要求开启防火墙,开启防火墙后,前后端分离的项目调试受影响,于是增加入站规则开放固定的后台服务端口,增加的mysql端口3306和redis端口6379,别人都可以访问,但是程序的端口808…...

academic-homepage:快速搭建个人学术主页,页面内容包括个人简介、教育经历、发布过的学术列表等,同时页面布局兼容移动端。
今天给大家分享GitHub 上一个开源的 GitHub Pages 模板 academic-homepage。 可帮助你快速搭建个人学术主页,页面内容包括个人简介、教育经历、发布过的学术列表等最基本内容,同时页面布局兼容移动端。 相关链接 github.com/luost26/academic-homepage …...
.env.development、.env.production、.env.staging
环境变量文件(如 .env.development、.env.production、.env.staging)用于根据不同的环境(开发、生产、测试等)配置应用程序的行为。 作用 .env.development:用于开发环境的配置。开发人员在本地开发时会使用这个文件…...
国密证书(gmssl)在Kylin Server V10下安装
1.查看操作系统信息 [root@localhost ~]# cat /etc/.kyinfo [dist] name=Kylin milestone=Server-V10-GFB-Release-ZF9_01-2204-Build03 arch=arm64 beta=False time=2023-01-09 11:04:36 dist_id=Kylin-Server-V10-GFB-Release-ZF9_01-2204-Build03-arm64-2023-01-09 11:04:…...

【数据服务篇】法律快车问答数据:为法律智能化铺就道路
数据来源 法律快车汇集了广泛的法律问题和专业律师的回答,这些来自用户和律师的数据构成了丰富的问答资源。用户通过平台提交各类法律疑问,得到资深律师的详尽解答,形成了一系列真实、多样化的法律案例和讨论。 数据获取见文末。 数据内容…...

各向异性含水层中地下水三维流基本微分方程的推导(二)
各向异性含水层中地下水三维流基本微分方程的推导 参考文献: [1] 刘欣怡,付小莉.论连续性方程的推导及几种形式转换的方法[J].力学与实践,2023,45(02):469-474. 书接上回: 我们能得到三个方向的流入流出平衡方程: ∂ ρ u x ∂ x d x d y d…...

cf2117E
原题链接:https://codeforces.com/contest/2117/problem/E 题目背景: 给定两个数组a,b,可以执行多次以下操作:选择 i (1 < i < n - 1),并设置 或,也可以在执行上述操作前执行一次删除任意 和 。求…...
css的定位(position)详解:相对定位 绝对定位 固定定位
在 CSS 中,元素的定位通过 position 属性控制,共有 5 种定位模式:static(静态定位)、relative(相对定位)、absolute(绝对定位)、fixed(固定定位)和…...

MySQL 8.0 OCP 英文题库解析(十三)
Oracle 为庆祝 MySQL 30 周年,截止到 2025.07.31 之前。所有人均可以免费考取原价245美元的MySQL OCP 认证。 从今天开始,将英文题库免费公布出来,并进行解析,帮助大家在一个月之内轻松通过OCP认证。 本期公布试题111~120 试题1…...
Go 语言并发编程基础:无缓冲与有缓冲通道
在上一章节中,我们了解了 Channel 的基本用法。本章将重点分析 Go 中通道的两种类型 —— 无缓冲通道与有缓冲通道,它们在并发编程中各具特点和应用场景。 一、通道的基本分类 类型定义形式特点无缓冲通道make(chan T)发送和接收都必须准备好࿰…...

面向无人机海岸带生态系统监测的语义分割基准数据集
描述:海岸带生态系统的监测是维护生态平衡和可持续发展的重要任务。语义分割技术在遥感影像中的应用为海岸带生态系统的精准监测提供了有效手段。然而,目前该领域仍面临一个挑战,即缺乏公开的专门面向海岸带生态系统的语义分割基准数据集。受…...

Windows安装Miniconda
一、下载 https://www.anaconda.com/download/success 二、安装 三、配置镜像源 Anaconda/Miniconda pip 配置清华镜像源_anaconda配置清华源-CSDN博客 四、常用操作命令 Anaconda/Miniconda 基本操作命令_miniconda创建环境命令-CSDN博客...

脑机新手指南(七):OpenBCI_GUI:从环境搭建到数据可视化(上)
一、OpenBCI_GUI 项目概述 (一)项目背景与目标 OpenBCI 是一个开源的脑电信号采集硬件平台,其配套的 OpenBCI_GUI 则是专为该硬件设计的图形化界面工具。对于研究人员、开发者和学生而言,首次接触 OpenBCI 设备时,往…...
深入理解Optional:处理空指针异常
1. 使用Optional处理可能为空的集合 在Java开发中,集合判空是一个常见但容易出错的场景。传统方式虽然可行,但存在一些潜在问题: // 传统判空方式 if (!CollectionUtils.isEmpty(userInfoList)) {for (UserInfo userInfo : userInfoList) {…...
Modbus RTU与Modbus TCP详解指南
目录 1. Modbus协议基础 1.1 什么是Modbus? 1.2 Modbus协议历史 1.3 Modbus协议族 1.4 Modbus通信模型 🎭 主从架构 🔄 请求响应模式 2. Modbus RTU详解 2.1 RTU是什么? 2.2 RTU物理层 🔌 连接方式 ⚡ 通信参数 2.3 RTU数据帧格式 📦 帧结构详解 🔍…...

沙箱虚拟化技术虚拟机容器之间的关系详解
问题 沙箱、虚拟化、容器三者分开一一介绍的话我知道他们各自都是什么东西,但是如果把三者放在一起,它们之间到底什么关系?又有什么联系呢?我不是很明白!!! 就比如说: 沙箱&#…...