当前位置: 首页 > news >正文

人工智能算法工程师(中级)课程9-PyTorch神经网络之全连接神经网络实战与代码详解

大家好,我是微学AI,今天给大家介绍一下人工智能算法工程师(中级)课程9-PyTorch神经网络之全连接神经网络实战与代码详解。本文将给大家展示全连接神经网络与代码详解,包括全连接模型的设计、数学原理介绍,并从手写数字识别到猫狗识别实战演练。

文章目录

  • 一、引言
  • 二、全连接模型的设计
    • 1. 神经元模型
    • 2. 网络结构
  • 三、全连接模型的参数计算
    • 1. 前向传播
    • 2. 反向传播
  • 四、全连接模型实现手写数字识别
    • 1. 数据准备
    • 2. 模型构建
    • 3. 代码实现
  • 五、阶段实战:猫狗识别
    • 1. 数据准备
    • 2. 模型构建
    • 3. 代码实现
  • 六、数学原理详解
    • 1. 激活函数
    • 2. 损失函数
    • 3. 优化算法
  • 七、总结

一、引言

全连接神经网络(Fully Connected Neural Network,FCNN)是一种经典的神经网络结构,它在众多领域都有着广泛的应用。本文将详细介绍全连接神经网络的设计、参数计算及其在图像识别任务中的应用。通过本文的学习,读者将掌握全连接神经网络的基本原理,并能够实现手写数字识别和猫狗识别等实战项目。

二、全连接模型的设计

1. 神经元模型

全连接神经网络的基本单元是神经元,其数学表达式为:
f ( x ) = σ ( ∑ i = 1 n w i x i + b ) f(x) = \sigma(\sum_{i=1}^{n}w_ix_i + b) f(x)=σ(i=1nwixi+b)
其中, x x x 为输入向量, w w w 为权重向量, b b b 为偏置, σ \sigma σ 为激活函数。

2. 网络结构

全连接神经网络由输入层、隐藏层和输出层组成。每一层的神经元都与上一层的所有神经元相连,如图1所示。
在这里插入图片描述

三、全连接模型的参数计算

1. 前向传播

假设一个全连接神经网络共有 l l l层,第 k k k层的输入为 X ( k ) X^{(k)} X(k),输出为 Y ( k ) Y^{(k)} Y(k),则有:
Y ( k ) = σ ( W ( k ) X ( k ) + b ( k ) ) Y^{(k)} = \sigma(W^{(k)}X^{(k)} + b^{(k)}) Y(k)=σ(W(k)X(k)+b(k))
其中, W ( k ) W^{(k)} W(k) b ( k ) b^{(k)} b(k) 分别为第 k k k层的权重和偏置。

2. 反向传播

全连接神经网络的参数更新通过反向传播算法实现。对于输出层,损失函数为:
L = 1 2 ( Y t r u e − Y p r e d ) 2 L = \frac{1}{2}(Y_{true} - Y_{pred})^2 L=21(YtrueYpred)2
其中, Y t r u e Y_{true} Ytrue 为真实标签, Y p r e d Y_{pred} Ypred 为预测值。
根据链式法则,输出层的权重梯度为:
∂ L ∂ W ( l ) = ∂ L ∂ Y ( l ) ⋅ ∂ Y ( l ) ∂ Z ( l ) ⋅ ∂ Z ( l ) ∂ W ( l ) \frac{\partial L}{\partial W^{(l)}} = \frac{\partial L}{\partial Y^{(l)}} \cdot \frac{\partial Y^{(l)}}{\partial Z^{(l)}} \cdot \frac{\partial Z^{(l)}}{\partial W^{(l)}} W(l)L=Y(l)LZ(l)Y(l)W(l)Z(l)
其中, Z ( l ) = W ( l ) X ( l ) + b ( l ) Z^{(l)} = W^{(l)}X^{(l)} + b^{(l)} Z(l)=W(l)X(l)+b(l)
同理,可求得输出层的偏置梯度、隐藏层的权重梯度和偏置梯度。

四、全连接模型实现手写数字识别

1. 数据准备

使用MNIST数据集,包含60000个训练样本和10000个测试样本。

2. 模型构建

构建一个简单的全连接神经网络,包含一个输入层(784个神经元)、两个隐藏层(128个神经元)和一个输出层(10个神经元)。
在这里插入图片描述

3. 代码实现

import torch
import torch.nn as nn
import torch.optim as optim
from torchvision import datasets, transforms
from torch.utils.data import DataLoader# 定义模型
class Net(nn.Module):def __init__(self):super(Net, self).__init__()self.model = nn.Sequential(nn.Flatten(),nn.Linear(28*28, 128),nn.ReLU(),nn.Linear(128, 128),nn.ReLU(),nn.Linear(128, 10),nn.Softmax(dim=1))def forward(self, x):return self.model(x)# 加载数据
transform = transforms.Compose([transforms.ToTensor()])
dataset = datasets.MNIST(root='./data', train=True, download=True, transform=transform)
dataloader = DataLoader(dataset, batch_size=32, shuffle=True)test_dataset = datasets.MNIST(root='./data', train=False, download=True, transform=transform)
test_dataloader = DataLoader(test_dataset, batch_size=32, shuffle=True)# 初始化模型和优化器
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model = Net().to(device)
optimizer = optim.Adam(model.parameters(), lr=0.001)
criterion = nn.CrossEntropyLoss()# 训练模型
for epoch in range(5):for i, (images, labels) in enumerate(dataloader):images, labels = images.to(device), labels.to(device)optimizer.zero_grad()outputs = model(images)loss = criterion(outputs, labels)loss.backward()optimizer.step()# 评估模型
correct = 0
total = 0
with torch.no_grad():for images, labels in test_dataloader:images, labels = images.to(device), labels.to(device)outputs = model(images)_, predicted = torch.max(outputs.data, 1)total += labels.size(0)correct += (predicted == labels).sum().item()print('Accuracy of the network on the 10000 test images: %d %%' % (100 * correct / total))

五、阶段实战:猫狗识别

1. 数据准备

使用猫狗数据集,包含25000张猫和狗的图片。我们将猫和狗的照片放在目录’data/train’下。

2. 模型构建

构建一个全连接神经网络,包含一个输入层(64643个神经元)、三个隐藏层(256、128、64个神经元)和一个输出层(2个神经元)。

3. 代码实现

import torch
import torch.nn as nn
import torch.optim as optim
from torchvision import datasets, transforms
from torch.utils.data import DataLoader# 定义数据预处理
data_transforms = transforms.Compose([transforms.Resize((64, 64)),transforms.RandomRotation(40),transforms.RandomHorizontalFlip(),transforms.RandomVerticalFlip(),transforms.RandomAffine(0, translate=(0.2, 0.2), scale=(0.8, 1.2)),transforms.ToTensor(),
])# 加载数据
train_dataset = datasets.ImageFolder('data/train', transform=data_transforms)
train_loader = DataLoader(train_dataset, batch_size=32, shuffle=True)# 定义模型
class Net(nn.Module):def __init__(self):super(Net, self).__init__()self.model = nn.Sequential(nn.Flatten(),nn.Linear(64*64*3, 256),nn.ReLU(),nn.Linear(256, 128),nn.ReLU(),nn.Linear(128, 64),nn.ReLU(),nn.Linear(64, 1),nn.Sigmoid())def forward(self, x):return self.model(x)# 初始化模型和优化器
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model = Net().to(device)
optimizer = optim.Adam(model.parameters(), lr=0.001)
criterion = nn.BCELoss()# 训练模型
for epoch in range(15):for i, (images, labels) in enumerate(train_loader):images, labels = images.to(device), labels.float().unsqueeze(1).to(device)optimizer.zero_grad()outputs = model(images)loss = criterion(outputs, labels)loss.backward()optimizer.step()# 评估模型
# 假设有一个测试数据集的加载器叫做 validation_loader
correct = 0
total = 0
with torch.no_grad():for images, labels in validation_loader:images, labels = images.to(device), labels.to(device)outputs = model(images)predicted = (outputs > 0.5).float()total += labels.size(0)correct += (predicted == labels).sum().item()
print('Accuracy of the network on the test images: %d %%' % (100 * correct / total))

六、数学原理详解

1. 激活函数

激活函数用于引入非线性因素,使得神经网络能够学习和模拟复杂函数。常用的激活函数有:

  • Sigmoid函数: σ ( x ) = 1 1 + e − x \sigma(x) = \frac{1}{1 + e^{-x}} σ(x)=1+ex1
  • ReLU函数: R e L U ( x ) = max ⁡ ( 0 , x ) ReLU(x) = \max(0, x) ReLU(x)=max(0,x)
  • Softmax函数: s o f t m a x ( x ) i = e x i ∑ j e x j softmax(x)_i = \frac{e^{x_i}}{\sum_j e^{x_j}} softmax(x)i=jexjexi

2. 损失函数

损失函数用于衡量模型预测值与真实值之间的差异。常用的损失函数有:

  • 均方误差(MSE): M S E ( y , y ^ ) = 1 n ∑ i = 1 n ( y i − y ^ i ) 2 MSE(y, \hat{y}) = \frac{1}{n}\sum_{i=1}^{n}(y_i - \hat{y}_i)^2 MSE(y,y^)=n1i=1n(yiy^i)2
  • 交叉熵损失:对于二分类问题, C E ( y , y ^ ) = − y log ⁡ ( y ^ ) − ( 1 − y ) log ⁡ ( 1 − y ^ ) CE(y, \hat{y}) = -y\log(\hat{y}) - (1-y)\log(1-\hat{y}) CE(y,y^)=ylog(y^)(1y)log(1y^)

3. 优化算法

优化算法用于更新网络的权重和偏置,以最小化损失函数。常用的优化算法有:

  • 梯度下降(Gradient Descent): w : = w − α ∂ L ∂ w w := w - \alpha \frac{\partial L}{\partial w} w:=wαwL
  • Adam优化器:结合了动量(Momentum)和自适应学习率(Adagrad)的优点。

七、总结

本篇文章从全连接神经网络的基本原理出发,介绍了全连接模型的设计、参数计算以及如何实现手写数字识别和猫狗识别。通过配套的完整可运行代码,读者可以更好地理解全连接神经网络的实现过程。在实际应用中,全连接神经网络虽然已被卷积神经网络(CNN)等更先进的网络结构所取代,但其基本原理仍然是深度学习领域的重要基石。希望本文能帮助读者深入掌握全连接神经网络,并为后续学习打下坚实的基础。

相关文章:

人工智能算法工程师(中级)课程9-PyTorch神经网络之全连接神经网络实战与代码详解

大家好,我是微学AI,今天给大家介绍一下人工智能算法工程师(中级)课程9-PyTorch神经网络之全连接神经网络实战与代码详解。本文将给大家展示全连接神经网络与代码详解,包括全连接模型的设计、数学原理介绍,并从手写数字识别到猫狗识…...

UDP网络通信(发送端+接收端)实例 —— Python

简介 在网络通信编程中,用的最多的就是UDP和TCP通信了,原理这里就不分析了,网上介绍也很多,这里简单列举一下各自的优缺点和使用场景 通信方式优点缺点适用场景UDP及时性好,快速视网络情况,存在丢包 与嵌入…...

从零开始实现大语言模型(五):缩放点积注意力机制

1. 前言 缩放点积注意力机制(scaled dot-product attention)是OpenAI的GPT系列大语言模型所使用的多头注意力机制(multi-head attention)的核心,其目标与前文所述简单自注意力机制完全相同,即输入向量序列 x 1 , x 2 , ⋯   , x n x_1, x_2, \cdots, x_n x...

PTA 7-15 希尔排序

本题目要求读入N个整数,采用希尔排序法进行排序,采用增量序列{5,3,1},输出完成增量5和增量3后的5子排序和3子排序结果。 输入格式: 输入不超过100的正整数N和N个整数(空格分隔)。 输出格式: …...

【密码学】分组密码的设计原则

分组密码设计的目标是在密钥控制下,从一个巨大的置换集合中高效地选取一个置换,用于加密给定的明文块。 一、混淆原则 混淆原则是密码学中一个至关重要的概念,由克劳德香农提出。混淆原则就是将密文、明文、密钥三者之间的统计关系和代数关系…...

深入解析【C++ list 容器】:高效数据管理的秘密武器

目录 1. list 的介绍及使用 1.1 list 的介绍 知识点: 小李的理解: 1.2 list 的使用 1.2.1 list 的构造 知识点: 小李的理解: 代码示例: 1.2.2 list 迭代器的使用 知识点: 小李的理解&#xff1…...

NFS服务器、autofs自动挂载综合实验

综合实验 现有主机 node01 和 node02,完成如下需求: 1、在 node01 主机上提供 DNS 和 WEB 服务 2、dns 服务提供本实验所有主机名解析 3、web服务提供 www.rhce.com 虚拟主机 4、该虚拟主机的documentroot目录在 /nfs/rhce 目录 5、该目录由 node02 主机…...

自动驾驶事故频发,安全痛点在哪里?

大数据产业创新服务媒体 ——聚焦数据 改变商业 近日,武汉城市留言板上出现了多条关于萝卜快跑的投诉,多名市民反映萝卜快跑出现无故停在马路中间、高架上占最左道低速行驶、转弯卡着不动等情况,导致早晚高峰时段出现拥堵。萝卜快跑是百度 A…...

SpringSecurity框架【认证】

目录 一. 快速入门 二. 认证 2.1 登陆校验流程 2.2 原理初探 2.3 解决问题 2.3.1 思路分析 2.3.2 准备工作 2.3.3 实现 2.3.3.1 数据库校验用户 2.3.3.2 密码加密存储 2.3.3.3 登录接口 2.3.3.4 认证过滤器 2.3.3.5 退出登录 Spring Security是Spring家族中的一个…...

python安全脚本开发简单思路

文章目录 为什么选择python作为安全脚本开发语言如何编写人生第一个安全脚本开发后续学习 为什么选择python作为安全脚本开发语言 易读性和易维护性:Python以其简洁的语法和清晰的代码结构著称,这使得它非常易于阅读和维护。在安全领域,代码…...

WPF学习(4) -- 数据模板

一、DataTemplate 在WPF(Windows Presentation Foundation)中,DataTemplate 用于定义数据的可视化呈现方式。它允许你自定义如何展示数据对象,从而实现更灵活和丰富的用户界面。DataTemplate 通常用于控件(如ListBox、…...

GuLi商城-商品服务-API-品牌管理-JSR303分组校验

注解:@Validated 实体类: package com.nanjing.gulimall.product.entity;import com.baomidou.mybatisplus.annotation.TableId; import com.baomidou.mybatisplus.annotation.TableName; import com.nanjing.common.valid.ListValue; import com.nanjing.common.valid.Updat…...

PyTorch DataLoader 学习

1. DataLoader的核心概念 DataLoader是PyTorch中一个重要的类,用于将数据集(dataset)和数据加载器(sampler)结合起来,以实现批量数据加载和处理。它可以高效地处理数据加载、多线程加载、批处理和数据增强…...

TCP传输控制协议二

TCP 是 TCP/IP 模型中的传输层一个最核心的协议,不仅如此,在整个 4 层模型中,它都是核心的协议,要不然模型怎么会叫做 TCP/IP 模型呢。 它向下使用网络层的 IP 协议,向上为 FTP、SMTP、POP3、SSH、Telnet、HTTP 等应用…...

【学习笔记】无人机(UAV)在3GPP系统中的增强支持(五)-同时支持无人机和eMBB用户数据传输的用例

引言 本文是3GPP TR 22.829 V17.1.0技术报告,专注于无人机(UAV)在3GPP系统中的增强支持。文章提出了多个无人机应用场景,分析了相应的能力要求,并建议了新的服务级别要求和关键性能指标(KPIs)。…...

使用F1C200S从零制作掌机之debian文件系统完善NES

一、模拟器源码 源码:https://files.cnblogs.com/files/twzy/arm-NES-linux-master.zip 二、文件系统 文件系统:debian bullseye 使用builtroot2018构建的文件系统,使用InfoNES模拟器存在bug,搞不定,所以放弃&…...

Vue 3 与 TypeScript:最佳实践详解

大家好,我是CodeQi! 很多人问我为什么要用TypeScript? 因为 Vue3 喜欢它! 开个玩笑... 在我们开始探索 Vue 3 和 TypeScript 最佳实践之前,让我们先打个比方。 如果你曾经尝试过在没有 GPS 的情况下开车到一个陌生的地方,你可能会知道那种迷失方向的感觉。 而 Typ…...

PyMysql error : Packet Sequence Number Wrong - got 1 expected 0

文章目录 错误一错误原因解决方案 错误二原因解决方案 我自己知道的,这类问题有两类原因,两种解决方案。 错误一 错误原因 pymysql的主进程启动的connect无法给子进程中使用,所以读取大批量数据时最后容易出现了此类问题。 解决方案 换成…...

MVC 生成验证码

在mvc 出现之前 生成验证码思路 在一个html页面上&#xff0c;生成一个验证码&#xff0c;在把这个页面嵌入到需要验证码的页面中。 JS生成验证码 <script type"text/javascript">jQuery(function ($) {/**生成一个随机数**/function randomNum(min, max) {…...

OSPF.综合实验

1、首先将各个网段基于172.16.0.0 16 进行划分 1.1、划分为4个大区域 172.16.0.0 18 172.16.64.0 18 172.16.128.0 18 172.16.192.0 18 四个网段 划分R4 划分area2 划分area3 划分area1 2、进行IP配置 如图使用配置指令进行配置 ip address x.x.x.x /x 并且将缺省路由…...

深入剖析AI大模型:大模型时代的 Prompt 工程全解析

今天聊的内容&#xff0c;我认为是AI开发里面非常重要的内容。它在AI开发里无处不在&#xff0c;当你对 AI 助手说 "用李白的风格写一首关于人工智能的诗"&#xff0c;或者让翻译模型 "将这段合同翻译成商务日语" 时&#xff0c;输入的这句话就是 Prompt。…...

Lombok 的 @Data 注解失效,未生成 getter/setter 方法引发的HTTP 406 错误

HTTP 状态码 406 (Not Acceptable) 和 500 (Internal Server Error) 是两类完全不同的错误&#xff0c;它们的含义、原因和解决方法都有显著区别。以下是详细对比&#xff1a; 1. HTTP 406 (Not Acceptable) 含义&#xff1a; 客户端请求的内容类型与服务器支持的内容类型不匹…...

python打卡day49

知识点回顾&#xff1a; 通道注意力模块复习空间注意力模块CBAM的定义 作业&#xff1a;尝试对今天的模型检查参数数目&#xff0c;并用tensorboard查看训练过程 import torch import torch.nn as nn# 定义通道注意力 class ChannelAttention(nn.Module):def __init__(self,…...

大话软工笔记—需求分析概述

需求分析&#xff0c;就是要对需求调研收集到的资料信息逐个地进行拆分、研究&#xff0c;从大量的不确定“需求”中确定出哪些需求最终要转换为确定的“功能需求”。 需求分析的作用非常重要&#xff0c;后续设计的依据主要来自于需求分析的成果&#xff0c;包括: 项目的目的…...

rknn优化教程(二)

文章目录 1. 前述2. 三方库的封装2.1 xrepo中的库2.2 xrepo之外的库2.2.1 opencv2.2.2 rknnrt2.2.3 spdlog 3. rknn_engine库 1. 前述 OK&#xff0c;开始写第二篇的内容了。这篇博客主要能写一下&#xff1a; 如何给一些三方库按照xmake方式进行封装&#xff0c;供调用如何按…...

AtCoder 第409​场初级竞赛 A~E题解

A Conflict 【题目链接】 原题链接&#xff1a;A - Conflict 【考点】 枚举 【题目大意】 找到是否有两人都想要的物品。 【解析】 遍历两端字符串&#xff0c;只有在同时为 o 时输出 Yes 并结束程序&#xff0c;否则输出 No。 【难度】 GESP三级 【代码参考】 #i…...

1688商品列表API与其他数据源的对接思路

将1688商品列表API与其他数据源对接时&#xff0c;需结合业务场景设计数据流转链路&#xff0c;重点关注数据格式兼容性、接口调用频率控制及数据一致性维护。以下是具体对接思路及关键技术点&#xff1a; 一、核心对接场景与目标 商品数据同步 场景&#xff1a;将1688商品信息…...

剑指offer20_链表中环的入口节点

链表中环的入口节点 给定一个链表&#xff0c;若其中包含环&#xff0c;则输出环的入口节点。 若其中不包含环&#xff0c;则输出null。 数据范围 节点 val 值取值范围 [ 1 , 1000 ] [1,1000] [1,1000]。 节点 val 值各不相同。 链表长度 [ 0 , 500 ] [0,500] [0,500]。 …...

spring:实例工厂方法获取bean

spring处理使用静态工厂方法获取bean实例&#xff0c;也可以通过实例工厂方法获取bean实例。 实例工厂方法步骤如下&#xff1a; 定义实例工厂类&#xff08;Java代码&#xff09;&#xff0c;定义实例工厂&#xff08;xml&#xff09;&#xff0c;定义调用实例工厂&#xff…...

【2025年】解决Burpsuite抓不到https包的问题

环境&#xff1a;windows11 burpsuite:2025.5 在抓取https网站时&#xff0c;burpsuite抓取不到https数据包&#xff0c;只显示&#xff1a; 解决该问题只需如下三个步骤&#xff1a; 1、浏览器中访问 http://burp 2、下载 CA certificate 证书 3、在设置--隐私与安全--…...