当前位置: 首页 > news >正文

【Python 项目】类鸟群:仿真鸟群

类鸟群:仿真鸟群

仔细观察一群鸟或一群鱼,你会发现,虽然群体由个体生物组成,但该群体作为一个整体似乎有它自己的生命。鸟群中的鸟在移动、飞越和绕过障碍物时,彼此之间相互定位。受到打扰或惊吓时会破坏编队,但随后重新集结,仿佛被某种更大的力量控制。

1986年,Craig Reynolds创造鸟类群体行为的一种逼真模拟,称为“类鸟群(Boids)”模型。关于类鸟群模型,值得注意的是,只有 3 个简单的规则控制着群体中个体间的相互作用,但该模型产生的行为类似于真正的鸟群。类鸟群模型被广泛研究,甚至被用来制作群体的计算机动画,如电影“蝙蝠侠归来(1992)”中的行军企鹅。

本项目将利用 Reynolds 的 3 个规则,创建一个类鸟群,模拟 N 只鸟的群体行为,并画出随着时间的推移,它们的位置和运动方向。我们还会提供一个方法,向鸟群中添加一只鸟,以及一种驱散效果,可以用于研究群体的局部干扰效果。类鸟群被称为“N 体模拟”,因为它模拟了 N 个粒子的动态系统,彼此之间施加作用力。

工作原理

模拟类鸟群的三大核心规则如下:
分离:保持类鸟个体之间的最小距离;
列队:让每个类鸟个体指向其局部同伴的平均移动方向;
内聚:让每个类鸟个体朝其局部同伴的质量中心移动。
类鸟群模拟也可以添加其他规则,如避开障碍物,或受到打扰时驱散鸟群,在随后的小节中我们将会探讨这些。这个版本的类鸟群在模拟的每一步中,实现了这些核心规则。

对于群体中的所有类鸟个体,做以下几件事:

  • 应用三大核心规则;
  • 应用所有附加规则;
  • 应用所有边界条件。
  • 更新类鸟个体的位置和速度。
  • 绘制新的位置和速度。

如你所见,这些简单的规则创造了一个鸟群,它具有演变的复杂行为。

所需模块

下面是该模拟要用到的 Python 工具:

  • numpy 数组,用于保存类鸟群的位置和速度;
  • matplotlib 库,用于生成类鸟群动画;
  • argparse,用于处理命令行选项;
  • scipy.spatial.distance 模块,包含一些非常简洁的方法,计算点之间的距离。

代码

首先,要计算类鸟群的位置和速度。接下来,要为模拟设置边界条件,看看如何绘制类鸟群,并实现前面讨论的类鸟群模拟规则。最后,我们会为模拟添加一些有趣的事件,即添加一些类鸟个体和驱散类鸟群。

计算类鸟群的位置和速度

类鸟群仿真需要从 numpy 数组取得信息,计算每一步中类鸟群个体的位置和速度。模拟开始时,将所有类鸟群个体大致放在屏幕中央,速度设置为随机的方向。

import math
import numpy as npwidth, height = 640, 480pos = [width/2.0, height/2.0] + 10*np.random.rand(2*N).reshape(N, 2)
angles = 2*math.pi*np.random.rand(N)
vel = np.array(list(zip(np.sin(angles), np.cos(angles))))

开始在第一行导入 math 模块,用于接下来的计算。在第二行,将 numpy 库导入为 np(少一些录入)。然后,设置屏幕上模拟窗口的宽度和高度。在第四行,创建一个 numpy 数组 pos,对窗口中心加上 10 个单位以内的随机偏移。代码np.random.rand(2 * N)创建了一个一维数组,包含范围在[0,1]的 2N 个随机数。然后 reshape()调用将它转换成二维数组的形状(N,2),它将用于保存类鸟群个体的位置。也要注意,numpy 的广播规则在这里生效:1×2 的数组加到 N×2 的数组的每个元素上。

接下来,用以下方法,创建随机单位速度矢量数组(这些都是模为 1.0 的矢量,指向随机的方向):给定一个角度 t,数字对(cos(t), sin(t))位于半径为 1.0 的圆上,中心在原点(0, 0)。如果从原点到圆上的一点画一条线,就得到一个单位矢量,它取决于角度 A。如果随机选择角度 A,就得到一个随机速度矢量。下图展示了这个方案。
在这里插入图片描述
在第五行,生成一个数组,包含 N 个随机角度,范围在[0, 2pi],在第六行,用前面讨论的随机向量方法生成一个数组,并用内置的 zip()方法将坐标分组。

设置边界条件

鸟儿飞翔在无际的天空,但类鸟群必须在有限的空间中运动。要创建这个空间,就要创建边界条件,在这个例子中,我们采用“平铺小块边界条件”。

将类鸟群模拟想象成发生在一个平铺的空间:如果类鸟群个体离开一个小块,它将从相反的方向进入到相同的小块。环形边界条件和小块边界条件之间的主要区别是,类鸟群模拟不会发生在离散的网格上,而是在一个连续区域移动。下图展示了这些小块边界条件的样子。请看下图中间的小块。飞出右侧的鸟儿正进入右边的小块,但该边界条件确保它们实际上通过平铺在左边的小块,又回到了中心的小块。在顶部和底部的小块,可以看到同样的事情发生。

在这里插入图片描述
下面是如何为类鸟群模拟实现平铺小块边界条件:

def applyBC(self):"""apply boundary conditions"""deltaR = 2.0for coord in self.pos:if coord[0] > width + deltaR:coord[0] = - deltaRif coord[0] < - deltaR:coord[0] = width + deltaRif coord[1] > height + deltaR:coord[1] = - deltaRif coord[1] < - deltaR:coord[1] = height + deltaR

在第五行,如果 x 坐标比小块的宽度大,则将它设置回小块的左侧边缘。该行中的 deltaR 提供了一个微小的缓冲区,它允许类鸟群个体开始从相反方向回来之前,稍稍移出小块之外一点,从而产生更好的视觉效果。在小块的左侧、顶部和底部边缘执行类似的检查。

绘制类鸟群

要生成动画,需要知道类鸟群个体的位置和速度,并有办法在每个时间步骤中表示位置和运动方向。

绘制类鸟群个体的身体和头部

为了生成类鸟群动画,我们用 matplotlib 和一点小技巧来绘制位置和速度。将每个类鸟群个体画成两个圆,如下图所示。较大的圆代表身体,较小的圆表示头部。点 P 是身体的中心,H 是头部的中心。根据公式 H = P + k × V 来计算 H 的位置,其中 V 是类鸟群个体的速度,k 是常数。在任何给定时间,类鸟群个体的头指向运动的方向。这指明了类鸟群个体的移动方向,比只画身体更好。

在这里插入图片描述
在下面的代码片段中,利用 matplotlib,用圆形标记画出类鸟群个体的身体。

fig = plt.figure()
ax = plt.axes(xlim=(0, width), ylim=(0, height))pts, = ax.plot([], [], markersize=10, c='k', marker='o', ls='None')
beak, = ax.plot([], [], markersize=4, c='r', marker='o', ls='None')
anim = animation.FuncAnimation(fig, tick, fargs=(pts, beak, boids),interval=50)

在第三和第四行分别为类鸟群个体的身体(pts)和头部(beak)标记设置大小和形状。在第五行为动画窗口添加鼠标按钮事件。既然知道了如何绘制身体和喙,让我们看看如何更新它们的位置。

更新类鸟群个体的位置

动画开始后,需要更新身体和头的位置,它指明了类鸟群个体移动的方向。用以下代码来实现:

vec = self.pos + 10*self.vel/self.maxVel
beak.set_sdata(vec.rehape(2*self.N)[::2], vec.reshape(2*self.N)[1::2])

在第一行,计算头部的位置,即在速度(vel)的方向上增加 10 个单位的位移。该位移确定了喙和身体之间的距离。在第二行,用头部位置的新值来更新(reshape)matplotlib 的轴(set_data)。[::2]从速度列表中选出偶数元素(x 轴的值),[1::2]选出奇数元素(Y 轴的值)。

应用类鸟群规则

现在,要在 Python 中实现类鸟群的 3 个规则。我们用“numpy 的方式”来完成这件事,避免循环并利用高度优化的 numpy 方法。

import numpy as np
from scipy.spatial.distance import squareform, pdist, cdistdef test2(pos, radius):# get distance matrixdistMatrix = squareform(pdist(pos))# apply thresholdD = distMatrix < radius# compute velocityvel = pos*D.sum(axis=1).reshape(N, 1) - D.dot(pos)return vel

在第五行,用 squareform()和 pdist()方法(在 scipy 库中定义),来计算一组点之间两两的距离(从数组中任意取两点,计算距离,然后针对所有可能的两点对这么做)。

squareform()方法给出一个 3×3 矩阵,其中项 Mij 给出了点 Pi和 Pj 之间的距离。接下来,在第七行,基于距离筛选这个矩阵。

在第九行的方法有点复杂。D.sum()方法按列对矩阵中的 True 值求和。reshape 是必需的,因为和是 N 个值的一维数组(形如(N,)),而你希望它形如(N,1),这样它就能够与位置数组相乘。D.dot()就是矩阵和位置矢量的点积(乘法)。

下面的方法利用前面讨论的 numpy 技术,应用类鸟群的 3 个规则:

	def applyRules(self):# apply rule #1: SeparationD = distMatrix < 25.0vel = self.pos*D.sum(axis=1).reshape(self.N, 1) - D.dot(self.pos)#应用分离规则时,每个个体都被“推离”相邻个体一定距离#计算出的速度被限制在某个最大值以内self.limit(vel, self.maxRuleVel)# distance threshold for alignment (different from separation)D = distMatrix < 50.0# apply rule #2: Alignmentvel2 = D.dot(self.vel)#应用列队规则时,50 个单位的半径内,所有相邻个体的速度之和限制为一个最大值				self.limit(vel2, self.maxRuleVel)vel += vel2;# apply rule #3: Cohesionvel3 = D.dot(self.pos) - self.pos#为每个个体增加一个速度矢量,它指向一定半径内相邻个体的重心或几何中心		self.limit(vel3, self.maxRuleVel)vel += vel3return vel

添加个体

类鸟群模拟的核心规则会导致类鸟群展示出群聚行为。但是,让我们在模拟过程中添加一个个体,看看表现如何,让事情变得更有趣。

下面的代码创建一个鼠标事件,让你点击鼠标左键添加一个个体。个体将出现在光标的位置,具有随机指定的速度

# 用 mpl_connect()方法向 matplotlib 画布添加一个按钮按下事件
cid = fig.canvas.mpl_connect('button_press_event', buttonPress)

现在,为了处理鼠标事件,实际创建类鸟群个体,添加以下代码:

def buttonPress(self, event):"""event handler for matplotlib button presses"""#确保鼠标事件是左键点击if event.button is 1:#将(event.xdata,event.ydata)给出的鼠标位置添加到类鸟群的位置数组		self.pos = np.concatenate((self.pos, np.array([[event.xdata, event.ydata]])), axis=0)# 将一个随机速度矢量添加到类鸟群的速度数组,并将类鸟群的计数增加 1angles = 2*math.pi*np.random.rand(1)v = np.array(list(zip(np.sin(angles), np.cos(angles))))self.vel = np.concatenate((self.vel, v), axis=0)self.N += 1

驱散类鸟群

3 个模拟规则保持类鸟群在移动时成为一个群体。但是,群体受到惊扰时,会发生什么?为了模拟这种情况,可以引入一种“驱散”效果:如果在用户界面(UI)窗口中单击右键,群体就会分散。你可以认为这是群体面对突然出现的捕食者的反应,或突然出现一声巨响惊吓了鸟群。下面是实现该效果的一种方式,它作为buttonPress()方法的延续:

# 检查鼠标按键是否是右键单击事件elif event.button is 3:# 改变每个个体的速度,在干扰出现的点(即点击鼠标的位置)的相反的方向上增加一个分量		self.vel += 0.1*(self.pos - np.array([[event.xdata, event.ydata]]))

最初,类鸟群将飞离该点,但你会看到,3 个规则胜出,类鸟群将作为群体再次会聚。

命令行参数

下面是类鸟群程序如何处理命令行参数:

parser = argparse.ArgumentParser(description="Implementing CraigReynolds's Boids...")# add arguments
parser.add_argument('--num-boids', dest='N', required=False)
args = parser.parse_args()# set the initial number of boids
N = 100
if args.N:N = int(args.N)# create boids
boids = Boids(N)

Boids 类

接下来看看 Boids 类,它代表了模拟。

class Boids:"""class that represents Boids simulation"""def __init__(self, N):"""initialize the Boid simulation"""# 初始化位置和速度数组self.pos = [width/2.0, height/2.0] + 10*np.random.rand(2*N).reshape(N, 2)# normalized random velocitiesangles = 2*math.pi*np.random.rand(N)self.vel = np.array(list(zip(np.sin(angles), np.cos(angles))))self.N = N # minimum distance of approachself.minDist = 25.0# maximum magnitude of velocities calculated by "rules"self.maxRuleVel = 0.03# maximum magnitude of the final velocityself.maxVel = 2.0

Boid 类处理初始化,更新动画,并应用规则。

boids.tick()在每个时间步骤被调用,以便更新动画,如下所示:

def tick(frameNum, pts, beak, boids):#print frameNum"""update function for animation"""boids.tick(frameNum, pts, beak)return pts, beak

我们还需要一种方法来限制某些矢量的值。否则,速度将在每个时间步骤无限制地增加,模拟将崩溃。

def limitVec(self, vec, maxVal):"""limit the magnitude of the 2D vector"""mag = norm(vec)if mag > maxVal:vec[0], vec[1] = vec[0]*maxVal/mag, vec[1]*maxVal/mag#限制了数组中的值,采用模拟规则计算出的值def limit(self, X, maxVal):"""limit the magnitude of 2D vectors in array X to maxValue"""for vec in X:self.limitVec(vec, maxVal)

完整代码

下面是类鸟群模拟的完整程序:

import sys, argparse
import math
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.animation as animation
from scipy.spatial.distance import squareform, pdist, cdist
from numpy.linalg import normwidth, height = 640, 480class Boids:"""class that represents Boids simulation"""def __init__(self, N):"""initialize the Boid simulation"""# 初始化位置和速度数组self.pos = [width/2.0, height/2.0] + 10*np.random.rand(2*N).reshape(N, 2)# normalized random velocitiesangles = 2*math.pi*np.random.rand(N)self.vel = np.array(list(zip(np.sin(angles), np.cos(angles))))self.N = N # minimum distance of approachself.minDist = 25.0# maximum magnitude of velocities calculated by "rules"self.maxRuleVel = 0.03# maximum magnitude of the final velocityself.maxVel = 2.0def tick(self, frameNum, pts, beak):#print frameNum"""update function for animation"""self.distMatrix = squareform(pdist(self.pos))self.vel += self.applyRules()self.limit(self.vel, self.maxVel)self.pos += self.velself.applyBC()pts.set_data(self.pos.reshape(2*self.N)[::2], self.pos.reshape(2*self.N)[1::2])vec = self.pos + 10*self.vel/self.maxVelbeak.set_data(vec.reshape(2*self.N)[::2], vec.reshape(2*self.N)[1::2])def limitVec(self, vec, maxVal):"""limit the magnitude of the 2D vector"""mag = norm(vec)if mag > maxVal:vec[0], vec[1] = vec[0]*maxVal/mag, vec[1]*maxVal/mag#限制了数组中的值,采用模拟规则计算出的值def limit(self, X, maxVal):"""limit the magnitude of 2D vectors in array X to maxValue"""for vec in X:self.limitVec(vec, maxVal)def applyBC(self):"""apply boundary conditions"""deltaR = 2.0for coord in self.pos:if coord[0] > width + deltaR:coord[0] = - deltaRif coord[0] < - deltaR:coord[0] = width + deltaRif coord[1] > height + deltaR:coord[1] = - deltaRif coord[1] < - deltaR:coord[1] = height + deltaRdef applyRules(self):# apply rule #1: SeparationD = self.distMatrix < 25.0vel = self.pos*D.sum(axis=1).reshape(self.N, 1) - D.dot(self.pos)self.limit(vel, self.maxRuleVel)# distance threshold for alignment (different from separation)D = self.distMatrix < 50.0# apply rule #2: Alignmentvel2 = D.dot(self.vel)self.limit(vel2, self.maxRuleVel)vel += vel2;# apply rule #3: Cohesionvel3 = D.dot(self.pos) - self.posself.limit(vel3, self.maxRuleVel)vel += vel3return veldef buttonPress(self, event):"""event handler for matplotlib button presses"""# left-click to add a boidif event.button is 1:self.pos = np.concatenate((self.pos, np.array([[event.xdata, event.ydata]])), axis=0)# generate a random velocityangles = 2*math.pi*np.random.rand(1)v = np.array(list(zip(np.sin(angles), np.cos(angles))))self.vel = np.concatenate((self.vel, v), axis=0)self.N += 1# right-click to scatter boidselif event.button is 3:# add scattering velocityself.vel += 0.1*(self.pos - np.array([[event.xdata, event.ydata]]))def tick(frameNum, pts, beak, boids):boids.tick(frameNum, pts, beak)return pts, beakdef main():print('starting boids...')parser = argparse.ArgumentParser(description="Implementing CraigReynolds's Boids...")# add argumentsparser.add_argument('--num-boids', dest='N', required=False)args = parser.parse_args()# set the initial number of boidsN = 100if args.N:N = int(args.N)# create boidsboids = Boids(N)fig = plt.figure()ax = plt.axes(xlim=(0, width), ylim=(0, height))pts, = ax.plot([], [], markersize=10, c='k', marker='o', ls='None')beak, = ax.plot([], [], markersize=4, c='r', marker='o', ls='None')anim = animation.FuncAnimation(fig, tick, fargs=(pts, beak, boids),interval=50)# 用 mpl_connect()方法向 matplotlib 画布添加一个按钮按下事件cid = fig.canvas.mpl_connect('button_press_event', boids.buttonPress)plt.show()if __name__ == '__main__':main()

相关文章:

【Python 项目】类鸟群:仿真鸟群

类鸟群&#xff1a;仿真鸟群 仔细观察一群鸟或一群鱼&#xff0c;你会发现&#xff0c;虽然群体由个体生物组成&#xff0c;但该群体作为一个整体似乎有它自己的生命。鸟群中的鸟在移动、飞越和绕过障碍物时&#xff0c;彼此之间相互定位。受到打扰或惊吓时会破坏编队&#xf…...

基于信号处理的PPG信号滤波降噪方法(MATLAB)

光电容积脉搏波PPG信号结合相关算法可以用于人体生理参数检测&#xff0c;如血压、血氧饱和度等&#xff0c;但采集过程中极易受到噪声干扰&#xff0c;对于血压、血氧饱和度测量的准确性造成影响。随着当今社会医疗保健技术的发展&#xff0c;可穿戴监测设备对于PPG信号的质量…...

新一代信息技术及应用

关于云计算的描述不正确的是&#xff08; &#xff09;。 A 云计算可以通过网络连接&#xff0c;用户通过网络接入“云”中并获得有关的服务&#xff0c;“云”内节点之间也通过内部的网络相连 B 云计算可以快速、按需、弹性服务&#xff0c;用户可以按照实际需求迅速获取或释放…...

SVN 解决冲突

SVN 解决冲突 1. 引言 在软件开发过程中,版本控制是一个至关重要的环节。SVN(Subversion)作为一个流行的版本控制系统,被广泛应用于团队协作中。然而,当多个开发者同时对同一部分代码进行修改时,冲突是不可避免的。本文将详细介绍如何在SVN中解决这些冲突,以便团队成员…...

机器人前沿--PalmE:An Embodied Multimodal Language Model 具身多模态大(语言)模型

首先解释这篇工作名称Palm-E&#xff0c;发表时间为2023.03&#xff0c;其中的Palm是谷歌内部在2022.04开发的大语言模型&#xff0c;功能类似ChatGPT&#xff0c;只是由于各种原因没有那样火起来&#xff0c;E是Embodied的首字母&#xff0c;翻译过来就是具身多模态大语言模型…...

编程语言都是哪些人开发出来的?为什么都是国外较小国家的人

编程语言都是哪些人开发出来的&#xff1f; 编程语言的开发者通常是来自计算机科学、软件工程、数学、物理学等领域的专家、学者和工程师。这些开发者具备深厚的编程技能、算法知识、系统设计能力以及创新思维&#xff0c;他们致力于创造出能够解决特定问题或满足特定需求的编…...

【前端速通系列|第二篇】Vue3前置知识

文章目录 1.前言2.包管理工具npm2.1下载node.js2.2配置 npm 镜像源2.3 npm 常用命令 3.Vite构建工具4.Vue3组件化5.Vue3运行原理 1.前言 本系列文章旨在帮助大家快速上手前端开发。 2.包管理工具npm npm 是 node.js中进行 包管理 的工具. 类似于Java中的Maven。 2.1下载nod…...

ES6 Module 的语法(十二)

ES6&#xff08;ECMAScript 2015&#xff09;引入了模块&#xff08;Modules&#xff09;的概念&#xff0c;使得JavaScript代码可以更容易地组织和复用。 1. export 关键字 命名导出 (Named Exports) 你可以使用 export 关键字导出多个变量、函数或类。 // module.js export…...

Redis 主从复制,哨兵与集群

目录 一.redis主从复制 1.redis 主从复制架构 2.主从复制特点 3.主从复制的基本原理 4.命令行配置 5.实现主从复制 6.删除主从复制 7.主从复制故障恢复 8.主从复制完整过程 9.主从同步优化配置 二.哨兵模式&#xff08;Sentinel&#xff09; 1.主要组件和概念 2.哨…...

CV05_深度学习模块之间的缝合教学(1)

1.1 在哪里缝 测试文件&#xff1f;&#xff08;&#xff09; 训练文件&#xff1f;&#xff08;&#xff09; 模型文件&#xff1f;&#xff08;√&#xff09; 1.2 骨干网络与模块缝合 以Vision Transformer为例&#xff0c;模型文件里有很多类&#xff0c;我们只在最后…...

【密码学】公钥密码的基本概念

在先前我写的密码学体制文章中谈到&#xff0c;现代密码学分为两大体制&#xff0c;介绍了一些有关对称密码体制诸如流密码和分组密码的内容。本文的主要内容则切换到公钥密码体制&#xff08;又称非对称密码体制&#xff09;&#xff0c;简述了公钥密码体制的基本思想和应用方…...

【前端项目笔记】10 项目优化上线

项目优化上线 目标&#xff1a;优化Vue项目部署Vue项目&#xff08;上线提供使用&#xff09; 项目优化 项目优化策略&#xff1a; 生成打包报告&#xff1a;根据生成的报告发现问题并解决第三方库启用CDN&#xff1a;提高首屏页面的加载效率Element-UI组件按需加载路由懒加…...

Qt基础控件总结—多页面切换(QStackWidget类、QTabBar类和QTabWidget类)

QStackedWidget 类 QStackedWidget 类是在 QStackedLayout 之上构造的一个便利的部件,其使用方法与步骤和 QStackedLayout 是一样的。QStackedWidget 类的成员函数与 QStackedLayout 类也基本上是一致的,使用该类就和使用 QStackedLayout 一样。 使用该类可以参考QStackedL…...

团队融合与业务突破

结束了在上海久事集团下属公司的《团队融合与业务突破》课程&#xff0c;不仅探讨了团队领导力的关键技巧&#xff0c;更重要的是&#xff0c;我们从业务协同的视角&#xff0c;在跨团队中如何达成了共识&#xff0c;结合系统思考的相关内容&#xff0c;让大家看到跨部门冲突的…...

mybatilsplaus 常用注解

官网地址 baomidou注解配置...

vue引入sm-crypto通过sm4对文件进行加解密,用户输入密码

对文件加密并保存&#xff1a; import { sm4 } from sm-cryptofetch("你的文件地址") .then(response > response.blob()) .then(byteStream > {const reader2 new FileReader();reader2.onload function(event) {const arrayBuffer event.target.result;l…...

vue3实现无缝滚动列表(大屏数据轮播场景)

实现思路 vue3目前可以通过第三方组件来实现这个需求。 下面介绍一下这个第三方滚动组件--vue3-scroll-seamless vue3-scroll-seamless 是一个用于 Vue 3 的插件&#xff0c;用于实现无缝滚动的组件。它可以让内容在水平或垂直方向上无缝滚动&#xff0c;适用于展示轮播图、新…...

element ui ts table重置排序

#日常# 今天带的实习生&#xff0c;在遇到开发过程中&#xff0c;遇到了element ui table 每次查询的时候都需要重置排序方式&#xff0c;而且多个排序是由前端排序。 <el-table :data"tableData" ref"restTable"> </<el-table> <script…...

python热门面试题三

面试题1&#xff1a;Python中的列表推导式是什么&#xff1f;请给出一个例子。 回答&#xff1a; 列表推导式&#xff08;List Comprehension&#xff09;是Python中一种非常强大且简洁的构建列表的工具。它允许你通过一个表达式来创建一个新的列表&#xff0c;这个表达式定义…...

sql monitoring 长SQL ASH AWR 都没有 未Commit or export to csv

Duration 4小时&#xff0c; Database Time 22.5&#xff0c; Session Inactive&#xff0c; 1.未Commit原因, 2.慢慢导出成csv文件&#xff1f; How is v$session status INACTIVE and v$sql_monitor status EXECUTING concurrently 2641811 Posts: 8 Jan 11, 2016 6:47P…...

算法学习day12(动态规划)

一、不同的二叉搜索树 二叉搜索树的性质&#xff1a;父节点比左边的孩子节点都大&#xff1b;比右边的孩子节点都小&#xff1b; 由图片可知&#xff0c;dp[3]是可以由dp[2]和dp[1]得出来的。(二叉搜索树的种类和根节点的val有关) 当val为1时&#xff0c;左边是一定没有节点的…...

Vue 3 <script setup> 使用v-bind(或简写为 :)来动态绑定图片的 src 属性

<img :src"images[currentIndex]" > <template> <div> <!-- 使用 v-bind 或简写为 : 来动态绑定图片的 src 属性 --> <img :src"images[currentIndex]" alt"Dynamic Image" style"width: 100px; height: a…...

​前端Vue自定义签到获取积分弹框组件设计与实现

摘要 随着前端技术的不断演进&#xff0c;开发的复杂性日益凸显。传统的整体式开发方式在面临功能迭代和修改时&#xff0c;常常牵一发而动全身&#xff0c;导致开发效率低下和维护成本高昂。组件化开发作为一种解决方案&#xff0c;通过实现模块的独立开发和维护&#xff0c;…...

闲置服务器废物利用_离线下载_私人影院_个人博客_私人云笔记_文件服务器

背景 家里有台旧windows笔记本&#xff0c;PentiumB940 2.00GHz的cpu 4G内存&#xff0c;512G硬盘 放在家里吃灰很久,最近几个月折腾折腾&#xff0c;装了linux操作系统&#xff0c;换了一个2T的硬盘 这里记录下折腾的过程,有需要的可以参考 开通公网IP 打电话给运营商一般都可…...

【Python学习笔记】调参工具Optuna + 泰坦尼克号案例

【Python学习笔记】调参工具Optuna&泰坦尼克号案例 背景前摇&#xff1a;&#xff08;省流可不看&#xff09; 最近找了份AI标注师的实习&#xff0c;但是全程都在做文本相关的活&#xff0c;本质上还是拧螺丝&#xff0c;就想着学点调参、部署什么的技能增加一些竞争力&a…...

GPT带我学-设计模式13-策略模式

概述 策略模式 例子 你可以创建一个策略工厂&#xff08;Strategy Factory&#xff09;来根据传入的 orgId 动态地选择合适的策略。以下是实现示例&#xff1a; 首先&#xff0c;定义策略接口和具体策略类&#xff1a; public interface CardPathStrategy {String generat…...

【Linux】Ubuntu配置JDK环境、MySQL环境

一、 Ubuntu配置JDK环境 在Ubuntu系统中安装JDK 8可以通过以下步骤进行&#xff1a; 打开终端。更新包列表&#xff1a; sudo apt update安装OpenJDK 8&#xff1a; sudo apt install openjdk-8-jdk验证安装是否成功&#xff1a; java -version注&#xff1a;如果系统中安…...

【ElasticSearch】ES 5.6.15 向量插件支持

参考 : https://github.com/lior-k/fast-elasticsearch-vector-scoring 下载插件 安装插件 插件目录&#xff1a; elasticsearch/plugins, 安装后的目录如下 plugins└── vector├── elasticsearch-binary-vector-scoring-5.6.9.jar└── plugin-descriptor.properties修…...

Kafka 高并发设计之数据压缩与批量消息处理

《Kafka 高性能架构设计 7 大秘诀》专栏第 6 章。 压缩&#xff0c;是一种用时间换空间的 trade-off 思想&#xff0c;用 CPU 的时间去换磁盘或者网络 I/O 传输量&#xff0c;用较小的 CPU 开销来换取更具性价比的磁盘占用和更少的网络 I/O 传输。 Kafka 是一个高吞吐量、可扩展…...

设计模式使用场景实现示例及优缺点(行为型模式——模板方法模式)

模板方法模式&#xff08;Template Method Pattern&#xff09; 模板方法模式&#xff08;Template Method Pattern&#xff09;是一种行为设计模式&#xff0c;它定义了一个操作中的算法的骨架&#xff0c;将算法的一些步骤延迟到子类中。这样可以在不改变算法的结构的前提下…...