CV05_深度学习模块之间的缝合教学(1)
1.1 在哪里缝
测试文件?(×)
训练文件?(×)
模型文件?(√)
1.2 骨干网络与模块缝合
以Vision Transformer为例,模型文件里有很多类,我们只在最后集大成的那个类里添加模块。
之后后,我们准备好我们要缝合的模块,比如SE Net模块,我们先建立一个测试文件测试能否跑通
import numpy as np
import torch
from torch import nn
from torch.nn import initclass SEAttention(nn.Module):# 初始化SE模块,channel为通道数,reduction为降维比率def __init__(self, channel=512, reduction=16):super().__init__()self.avg_pool = nn.AdaptiveAvgPool2d(1) # 自适应平均池化层,将特征图的空间维度压缩为1x1self.fc = nn.Sequential( # 定义两个全连接层作为激励操作,通过降维和升维调整通道重要性nn.Linear(channel, channel // reduction, bias=False), # 降维,减少参数数量和计算量nn.ReLU(inplace=True), # ReLU激活函数,引入非线性nn.Linear(channel // reduction, channel, bias=False), # 升维,恢复到原始通道数nn.Sigmoid() # Sigmoid激活函数,输出每个通道的重要性系数)# 权重初始化方法def init_weights(self):for m in self.modules(): # 遍历模块中的所有子模块if isinstance(m, nn.Conv2d): # 对于卷积层init.kaiming_normal_(m.weight, mode='fan_out') # 使用Kaiming初始化方法初始化权重if m.bias is not None:init.constant_(m.bias, 0) # 如果有偏置项,则初始化为0elif isinstance(m, nn.BatchNorm2d): # 对于批归一化层init.constant_(m.weight, 1) # 权重初始化为1init.constant_(m.bias, 0) # 偏置初始化为0elif isinstance(m, nn.Linear): # 对于全连接层init.normal_(m.weight, std=0.001) # 权重使用正态分布初始化if m.bias is not None:init.constant_(m.bias, 0) # 偏置初始化为0# 前向传播方法def forward(self, x):b, c, _, _ = x.size() # 获取输入x的批量大小b和通道数cy = self.avg_pool(x).view(b, c) # 通过自适应平均池化层后,调整形状以匹配全连接层的输入y = self.fc(y).view(b, c, 1, 1) # 通过全连接层计算通道重要性,调整形状以匹配原始特征图的形状return x * y.expand_as(x) # 将通道重要性系数应用到原始特征图上,进行特征重新校准# 示例使用
if __name__ == '__main__':input = torch.randn(50, 512, 7, 7) # 随机生成一个输入特征图se = SEAttention(channel=512, reduction=8) # 实例化SE模块,设置降维比率为8output = se(input) # 将输入特征图通过SE模块进行处理print(output.shape) # 打印处理后的特征图形状,验证SE模块的作用
打印处理后的形状,我们这里要注意,缝合模块时只需要注意第一维,也就是这个channel,要和骨干网络保持一致,只要你把输入输出的通道数对齐,那么这个通道数就可以缝合成功。
把模块复制进骨干网络中:
然后进行缝合,在缝合之前要先测试通道是否匹配,不然肯定报错。
如何验证通道数
我们找到骨干网络前向传播的部分,在你想加入这个模块地方print(x.shape)即可。运行训练文件:
放在最前面:
通道数为3(8为batch size)。
将模块添加进骨干网络
在骨干网络的init函数下添加:(ctrl+p可查看参数)通道数与之前查的对齐。
在前向传播中添加:
看看是否正常运行:
正常运行,说明模块缝合成功!
打印缝合后的模型结构
该操作在模型文件中进行。
VisionTransformer(
(patch_embed): PatchEmbed(
(proj): Conv2d(3, 768, kernel_size=(16, 16), stride=(16, 16))
(norm): Identity()
)
(pos_drop): Dropout(p=0.0, inplace=False)
(blocks): Sequential(
(0): Block(
(norm1): LayerNorm((768,), eps=1e-06, elementwise_affine=True)
(attn): Attention(
(qkv): Linear(in_features=768, out_features=2304, bias=True)
(attn_drop): Dropout(p=0.0, inplace=False)
(proj): Linear(in_features=768, out_features=768, bias=True)
(proj_drop): Dropout(p=0.0, inplace=False)
)
(drop_path): Identity()
(norm2): LayerNorm((768,), eps=1e-06, elementwise_affine=True)
(mlp): Mlp(
(fc1): Linear(in_features=768, out_features=3072, bias=True)
(act): GELU()
(fc2): Linear(in_features=3072, out_features=768, bias=True)
(drop): Dropout(p=0.0, inplace=False)
)
)
(1): Block(
(norm1): LayerNorm((768,), eps=1e-06, elementwise_affine=True)
(attn): Attention(
(qkv): Linear(in_features=768, out_features=2304, bias=True)
(attn_drop): Dropout(p=0.0, inplace=False)
(proj): Linear(in_features=768, out_features=768, bias=True)
(proj_drop): Dropout(p=0.0, inplace=False)
)
(drop_path): Identity()
(norm2): LayerNorm((768,), eps=1e-06, elementwise_affine=True)
(mlp): Mlp(
(fc1): Linear(in_features=768, out_features=3072, bias=True)
(act): GELU()
(fc2): Linear(in_features=3072, out_features=768, bias=True)
(drop): Dropout(p=0.0, inplace=False)
)
)
(2): Block(
(norm1): LayerNorm((768,), eps=1e-06, elementwise_affine=True)
(attn): Attention(
(qkv): Linear(in_features=768, out_features=2304, bias=True)
(attn_drop): Dropout(p=0.0, inplace=False)
(proj): Linear(in_features=768, out_features=768, bias=True)
(proj_drop): Dropout(p=0.0, inplace=False)
)
(drop_path): Identity()
(norm2): LayerNorm((768,), eps=1e-06, elementwise_affine=True)
(mlp): Mlp(
(fc1): Linear(in_features=768, out_features=3072, bias=True)
(act): GELU()
(fc2): Linear(in_features=3072, out_features=768, bias=True)
(drop): Dropout(p=0.0, inplace=False)
)
)
(3): Block(
(norm1): LayerNorm((768,), eps=1e-06, elementwise_affine=True)
(attn): Attention(
(qkv): Linear(in_features=768, out_features=2304, bias=True)
(attn_drop): Dropout(p=0.0, inplace=False)
(proj): Linear(in_features=768, out_features=768, bias=True)
(proj_drop): Dropout(p=0.0, inplace=False)
)
(drop_path): Identity()
(norm2): LayerNorm((768,), eps=1e-06, elementwise_affine=True)
(mlp): Mlp(
(fc1): Linear(in_features=768, out_features=3072, bias=True)
(act): GELU()
(fc2): Linear(in_features=3072, out_features=768, bias=True)
(drop): Dropout(p=0.0, inplace=False)
)
)
(4): Block(
(norm1): LayerNorm((768,), eps=1e-06, elementwise_affine=True)
(attn): Attention(
(qkv): Linear(in_features=768, out_features=2304, bias=True)
(attn_drop): Dropout(p=0.0, inplace=False)
(proj): Linear(in_features=768, out_features=768, bias=True)
(proj_drop): Dropout(p=0.0, inplace=False)
)
(drop_path): Identity()
(norm2): LayerNorm((768,), eps=1e-06, elementwise_affine=True)
(mlp): Mlp(
(fc1): Linear(in_features=768, out_features=3072, bias=True)
(act): GELU()
(fc2): Linear(in_features=3072, out_features=768, bias=True)
(drop): Dropout(p=0.0, inplace=False)
)
)
(5): Block(
(norm1): LayerNorm((768,), eps=1e-06, elementwise_affine=True)
(attn): Attention(
(qkv): Linear(in_features=768, out_features=2304, bias=True)
(attn_drop): Dropout(p=0.0, inplace=False)
(proj): Linear(in_features=768, out_features=768, bias=True)
(proj_drop): Dropout(p=0.0, inplace=False)
)
(drop_path): Identity()
(norm2): LayerNorm((768,), eps=1e-06, elementwise_affine=True)
(mlp): Mlp(
(fc1): Linear(in_features=768, out_features=3072, bias=True)
(act): GELU()
(fc2): Linear(in_features=3072, out_features=768, bias=True)
(drop): Dropout(p=0.0, inplace=False)
)
)
(6): Block(
(norm1): LayerNorm((768,), eps=1e-06, elementwise_affine=True)
(attn): Attention(
(qkv): Linear(in_features=768, out_features=2304, bias=True)
(attn_drop): Dropout(p=0.0, inplace=False)
(proj): Linear(in_features=768, out_features=768, bias=True)
(proj_drop): Dropout(p=0.0, inplace=False)
)
(drop_path): Identity()
(norm2): LayerNorm((768,), eps=1e-06, elementwise_affine=True)
(mlp): Mlp(
(fc1): Linear(in_features=768, out_features=3072, bias=True)
(act): GELU()
(fc2): Linear(in_features=3072, out_features=768, bias=True)
(drop): Dropout(p=0.0, inplace=False)
)
)
(7): Block(
(norm1): LayerNorm((768,), eps=1e-06, elementwise_affine=True)
(attn): Attention(
(qkv): Linear(in_features=768, out_features=2304, bias=True)
(attn_drop): Dropout(p=0.0, inplace=False)
(proj): Linear(in_features=768, out_features=768, bias=True)
(proj_drop): Dropout(p=0.0, inplace=False)
)
(drop_path): Identity()
(norm2): LayerNorm((768,), eps=1e-06, elementwise_affine=True)
(mlp): Mlp(
(fc1): Linear(in_features=768, out_features=3072, bias=True)
(act): GELU()
(fc2): Linear(in_features=3072, out_features=768, bias=True)
(drop): Dropout(p=0.0, inplace=False)
)
)
(8): Block(
(norm1): LayerNorm((768,), eps=1e-06, elementwise_affine=True)
(attn): Attention(
(qkv): Linear(in_features=768, out_features=2304, bias=True)
(attn_drop): Dropout(p=0.0, inplace=False)
(proj): Linear(in_features=768, out_features=768, bias=True)
(proj_drop): Dropout(p=0.0, inplace=False)
)
(drop_path): Identity()
(norm2): LayerNorm((768,), eps=1e-06, elementwise_affine=True)
(mlp): Mlp(
(fc1): Linear(in_features=768, out_features=3072, bias=True)
(act): GELU()
(fc2): Linear(in_features=3072, out_features=768, bias=True)
(drop): Dropout(p=0.0, inplace=False)
)
)
(9): Block(
(norm1): LayerNorm((768,), eps=1e-06, elementwise_affine=True)
(attn): Attention(
(qkv): Linear(in_features=768, out_features=2304, bias=True)
(attn_drop): Dropout(p=0.0, inplace=False)
(proj): Linear(in_features=768, out_features=768, bias=True)
(proj_drop): Dropout(p=0.0, inplace=False)
)
(drop_path): Identity()
(norm2): LayerNorm((768,), eps=1e-06, elementwise_affine=True)
(mlp): Mlp(
(fc1): Linear(in_features=768, out_features=3072, bias=True)
(act): GELU()
(fc2): Linear(in_features=3072, out_features=768, bias=True)
(drop): Dropout(p=0.0, inplace=False)
)
)
(10): Block(
(norm1): LayerNorm((768,), eps=1e-06, elementwise_affine=True)
(attn): Attention(
(qkv): Linear(in_features=768, out_features=2304, bias=True)
(attn_drop): Dropout(p=0.0, inplace=False)
(proj): Linear(in_features=768, out_features=768, bias=True)
(proj_drop): Dropout(p=0.0, inplace=False)
)
(drop_path): Identity()
(norm2): LayerNorm((768,), eps=1e-06, elementwise_affine=True)
(mlp): Mlp(
(fc1): Linear(in_features=768, out_features=3072, bias=True)
(act): GELU()
(fc2): Linear(in_features=3072, out_features=768, bias=True)
(drop): Dropout(p=0.0, inplace=False)
)
)
(11): Block(
(norm1): LayerNorm((768,), eps=1e-06, elementwise_affine=True)
(attn): Attention(
(qkv): Linear(in_features=768, out_features=2304, bias=True)
(attn_drop): Dropout(p=0.0, inplace=False)
(proj): Linear(in_features=768, out_features=768, bias=True)
(proj_drop): Dropout(p=0.0, inplace=False)
)
(drop_path): Identity()
(norm2): LayerNorm((768,), eps=1e-06, elementwise_affine=True)
(mlp): Mlp(
(fc1): Linear(in_features=768, out_features=3072, bias=True)
(act): GELU()
(fc2): Linear(in_features=3072, out_features=768, bias=True)
(drop): Dropout(p=0.0, inplace=False)
)
)
)
(norm): LayerNorm((768,), eps=1e-06, elementwise_affine=True)
(pre_logits): Sequential(
(fc): Linear(in_features=768, out_features=768, bias=True)
(act): Tanh()
)
(head): Linear(in_features=768, out_features=21843, bias=True)
(se): SEAttention(
(avg_pool): AdaptiveAvgPool2d(output_size=1)
(fc): Sequential(
(0): Linear(in_features=3, out_features=0, bias=False)
(1): ReLU(inplace=True)
(2): Linear(in_features=0, out_features=3, bias=False)
(3): Sigmoid()
)
)
)
我们可以看到多了一个SEAttention,说明模块缝合进去了!
1.3 模块之间缝合
以SENet和ECA模块为例。
串联模块
方式1
同1.2。照猫画虎。(注意通道数保持一致)
打印模型结构:
ECAAttention(
(gap): AdaptiveAvgPool2d(output_size=1)
(conv): Conv1d(1, 1, kernel_size=(3,), stride=(1,), padding=(1,))
(sigmoid): Sigmoid()
(se): SEAttention(
(avg_pool): AdaptiveAvgPool2d(output_size=1)
(fc): Sequential(
(0): Linear(in_features=64, out_features=4, bias=False)
(1): ReLU(inplace=True)
(2): Linear(in_features=4, out_features=64, bias=False)
(3): Sigmoid()
)))
方式2
我们定义一个串联函数,将模块之间串联起来:
实例化查看一下模型结构
输出结果:
torch.Size([1, 63, 64, 64]) torch.Size([1, 63, 64, 64])
Cascade(
(se): SEAttention(
(avg_pool): AdaptiveAvgPool2d(output_size=1)
(fc): Sequential(
(0): Linear(in_features=63, out_features=3, bias=False)
(1): ReLU(inplace=True)
(2): Linear(in_features=3, out_features=63, bias=False)
(3): Sigmoid()
)
)
(eca): ECAAttention(
(gap): AdaptiveAvgPool2d(output_size=1)
(conv): Conv1d(1, 1, kernel_size=(63,), stride=(1,), padding=(31,))
(sigmoid): Sigmoid()
)
)
并联模块
对于并联模块,方法有很多种,两个两个模块输出的张量可以:
(1)逐元素相加(2)逐元素相乘(3)concat拼接(4)等等
输出结果:
torch.Size([1, 63, 64, 64]) torch.Size([1, 126, 64, 64])
Cascade(
(se): SEAttention(
(avg_pool): AdaptiveAvgPool2d(output_size=1)
(fc): Sequential(
(0): Linear(in_features=63, out_features=3, bias=False)
(1): ReLU(inplace=True)
(2): Linear(in_features=3, out_features=63, bias=False)
(3): Sigmoid()
)
)
(eca): ECAAttention(
(gap): AdaptiveAvgPool2d(output_size=1)
(conv): Conv1d(1, 1, kernel_size=(63,), stride=(1,), padding=(31,))
(sigmoid): Sigmoid()
)
)
1.4 思考
我们不要拘泥于只串联获并联,可以将二者结合,多个模块中,部分模块并联后又与其他模块串联,等等。。这种排列组合之后,总会有一个你想要的模型!!!
相关文章:

CV05_深度学习模块之间的缝合教学(1)
1.1 在哪里缝 测试文件?() 训练文件?() 模型文件?(√) 1.2 骨干网络与模块缝合 以Vision Transformer为例,模型文件里有很多类,我们只在最后…...

【密码学】公钥密码的基本概念
在先前我写的密码学体制文章中谈到,现代密码学分为两大体制,介绍了一些有关对称密码体制诸如流密码和分组密码的内容。本文的主要内容则切换到公钥密码体制(又称非对称密码体制),简述了公钥密码体制的基本思想和应用方…...

【前端项目笔记】10 项目优化上线
项目优化上线 目标:优化Vue项目部署Vue项目(上线提供使用) 项目优化 项目优化策略: 生成打包报告:根据生成的报告发现问题并解决第三方库启用CDN:提高首屏页面的加载效率Element-UI组件按需加载路由懒加…...

Qt基础控件总结—多页面切换(QStackWidget类、QTabBar类和QTabWidget类)
QStackedWidget 类 QStackedWidget 类是在 QStackedLayout 之上构造的一个便利的部件,其使用方法与步骤和 QStackedLayout 是一样的。QStackedWidget 类的成员函数与 QStackedLayout 类也基本上是一致的,使用该类就和使用 QStackedLayout 一样。 使用该类可以参考QStackedL…...

团队融合与业务突破
结束了在上海久事集团下属公司的《团队融合与业务突破》课程,不仅探讨了团队领导力的关键技巧,更重要的是,我们从业务协同的视角,在跨团队中如何达成了共识,结合系统思考的相关内容,让大家看到跨部门冲突的…...

mybatilsplaus 常用注解
官网地址 baomidou注解配置...
vue引入sm-crypto通过sm4对文件进行加解密,用户输入密码
对文件加密并保存: import { sm4 } from sm-cryptofetch("你的文件地址") .then(response > response.blob()) .then(byteStream > {const reader2 new FileReader();reader2.onload function(event) {const arrayBuffer event.target.result;l…...

vue3实现无缝滚动列表(大屏数据轮播场景)
实现思路 vue3目前可以通过第三方组件来实现这个需求。 下面介绍一下这个第三方滚动组件--vue3-scroll-seamless vue3-scroll-seamless 是一个用于 Vue 3 的插件,用于实现无缝滚动的组件。它可以让内容在水平或垂直方向上无缝滚动,适用于展示轮播图、新…...

element ui ts table重置排序
#日常# 今天带的实习生,在遇到开发过程中,遇到了element ui table 每次查询的时候都需要重置排序方式,而且多个排序是由前端排序。 <el-table :data"tableData" ref"restTable"> </<el-table> <script…...
python热门面试题三
面试题1:Python中的列表推导式是什么?请给出一个例子。 回答: 列表推导式(List Comprehension)是Python中一种非常强大且简洁的构建列表的工具。它允许你通过一个表达式来创建一个新的列表,这个表达式定义…...

sql monitoring 长SQL ASH AWR 都没有 未Commit or export to csv
Duration 4小时, Database Time 22.5, Session Inactive, 1.未Commit原因, 2.慢慢导出成csv文件? How is v$session status INACTIVE and v$sql_monitor status EXECUTING concurrently 2641811 Posts: 8 Jan 11, 2016 6:47P…...

算法学习day12(动态规划)
一、不同的二叉搜索树 二叉搜索树的性质:父节点比左边的孩子节点都大;比右边的孩子节点都小; 由图片可知,dp[3]是可以由dp[2]和dp[1]得出来的。(二叉搜索树的种类和根节点的val有关) 当val为1时,左边是一定没有节点的…...
Vue 3 <script setup> 使用v-bind(或简写为 :)来动态绑定图片的 src 属性
<img :src"images[currentIndex]" > <template> <div> <!-- 使用 v-bind 或简写为 : 来动态绑定图片的 src 属性 --> <img :src"images[currentIndex]" alt"Dynamic Image" style"width: 100px; height: a…...

前端Vue自定义签到获取积分弹框组件设计与实现
摘要 随着前端技术的不断演进,开发的复杂性日益凸显。传统的整体式开发方式在面临功能迭代和修改时,常常牵一发而动全身,导致开发效率低下和维护成本高昂。组件化开发作为一种解决方案,通过实现模块的独立开发和维护,…...
闲置服务器废物利用_离线下载_私人影院_个人博客_私人云笔记_文件服务器
背景 家里有台旧windows笔记本,PentiumB940 2.00GHz的cpu 4G内存,512G硬盘 放在家里吃灰很久,最近几个月折腾折腾,装了linux操作系统,换了一个2T的硬盘 这里记录下折腾的过程,有需要的可以参考 开通公网IP 打电话给运营商一般都可…...

【Python学习笔记】调参工具Optuna + 泰坦尼克号案例
【Python学习笔记】调参工具Optuna&泰坦尼克号案例 背景前摇:(省流可不看) 最近找了份AI标注师的实习,但是全程都在做文本相关的活,本质上还是拧螺丝,就想着学点调参、部署什么的技能增加一些竞争力&a…...
GPT带我学-设计模式13-策略模式
概述 策略模式 例子 你可以创建一个策略工厂(Strategy Factory)来根据传入的 orgId 动态地选择合适的策略。以下是实现示例: 首先,定义策略接口和具体策略类: public interface CardPathStrategy {String generat…...
【Linux】Ubuntu配置JDK环境、MySQL环境
一、 Ubuntu配置JDK环境 在Ubuntu系统中安装JDK 8可以通过以下步骤进行: 打开终端。更新包列表: sudo apt update安装OpenJDK 8: sudo apt install openjdk-8-jdk验证安装是否成功: java -version注:如果系统中安…...
【ElasticSearch】ES 5.6.15 向量插件支持
参考 : https://github.com/lior-k/fast-elasticsearch-vector-scoring 下载插件 安装插件 插件目录: elasticsearch/plugins, 安装后的目录如下 plugins└── vector├── elasticsearch-binary-vector-scoring-5.6.9.jar└── plugin-descriptor.properties修…...

Kafka 高并发设计之数据压缩与批量消息处理
《Kafka 高性能架构设计 7 大秘诀》专栏第 6 章。 压缩,是一种用时间换空间的 trade-off 思想,用 CPU 的时间去换磁盘或者网络 I/O 传输量,用较小的 CPU 开销来换取更具性价比的磁盘占用和更少的网络 I/O 传输。 Kafka 是一个高吞吐量、可扩展…...

无法与IP建立连接,未能下载VSCode服务器
如题,在远程连接服务器的时候突然遇到了这个提示。 查阅了一圈,发现是VSCode版本自动更新惹的祸!!! 在VSCode的帮助->关于这里发现前几天VSCode自动更新了,我的版本号变成了1.100.3 才导致了远程连接出…...
基于服务器使用 apt 安装、配置 Nginx
🧾 一、查看可安装的 Nginx 版本 首先,你可以运行以下命令查看可用版本: apt-cache madison nginx-core输出示例: nginx-core | 1.18.0-6ubuntu14.6 | http://archive.ubuntu.com/ubuntu focal-updates/main amd64 Packages ng…...
Golang dig框架与GraphQL的完美结合
将 Go 的 Dig 依赖注入框架与 GraphQL 结合使用,可以显著提升应用程序的可维护性、可测试性以及灵活性。 Dig 是一个强大的依赖注入容器,能够帮助开发者更好地管理复杂的依赖关系,而 GraphQL 则是一种用于 API 的查询语言,能够提…...
GitHub 趋势日报 (2025年06月08日)
📊 由 TrendForge 系统生成 | 🌐 https://trendforge.devlive.org/ 🌐 本日报中的项目描述已自动翻译为中文 📈 今日获星趋势图 今日获星趋势图 884 cognee 566 dify 414 HumanSystemOptimization 414 omni-tools 321 note-gen …...

【OSG学习笔记】Day 16: 骨骼动画与蒙皮(osgAnimation)
骨骼动画基础 骨骼动画是 3D 计算机图形中常用的技术,它通过以下两个主要组件实现角色动画。 骨骼系统 (Skeleton):由层级结构的骨头组成,类似于人体骨骼蒙皮 (Mesh Skinning):将模型网格顶点绑定到骨骼上,使骨骼移动…...
uniapp中使用aixos 报错
问题: 在uniapp中使用aixos,运行后报如下错误: AxiosError: There is no suitable adapter to dispatch the request since : - adapter xhr is not supported by the environment - adapter http is not available in the build 解决方案&…...

SpringTask-03.入门案例
一.入门案例 启动类: package com.sky;import lombok.extern.slf4j.Slf4j; import org.springframework.boot.SpringApplication; import org.springframework.boot.autoconfigure.SpringBootApplication; import org.springframework.cache.annotation.EnableCach…...

企业如何增强终端安全?
在数字化转型加速的今天,企业的业务运行越来越依赖于终端设备。从员工的笔记本电脑、智能手机,到工厂里的物联网设备、智能传感器,这些终端构成了企业与外部世界连接的 “神经末梢”。然而,随着远程办公的常态化和设备接入的爆炸式…...

AI,如何重构理解、匹配与决策?
AI 时代,我们如何理解消费? 作者|王彬 封面|Unplash 人们通过信息理解世界。 曾几何时,PC 与移动互联网重塑了人们的购物路径:信息变得唾手可得,商品决策变得高度依赖内容。 但 AI 时代的来…...

搭建DNS域名解析服务器(正向解析资源文件)
正向解析资源文件 1)准备工作 服务端及客户端都关闭安全软件 [rootlocalhost ~]# systemctl stop firewalld [rootlocalhost ~]# setenforce 0 2)服务端安装软件:bind 1.配置yum源 [rootlocalhost ~]# cat /etc/yum.repos.d/base.repo [Base…...