CV05_深度学习模块之间的缝合教学(1)
1.1 在哪里缝
测试文件?(×)
训练文件?(×)
模型文件?(√)
1.2 骨干网络与模块缝合
以Vision Transformer为例,模型文件里有很多类,我们只在最后集大成的那个类里添加模块。

之后后,我们准备好我们要缝合的模块,比如SE Net模块,我们先建立一个测试文件测试能否跑通
import numpy as np
import torch
from torch import nn
from torch.nn import initclass SEAttention(nn.Module):# 初始化SE模块,channel为通道数,reduction为降维比率def __init__(self, channel=512, reduction=16):super().__init__()self.avg_pool = nn.AdaptiveAvgPool2d(1) # 自适应平均池化层,将特征图的空间维度压缩为1x1self.fc = nn.Sequential( # 定义两个全连接层作为激励操作,通过降维和升维调整通道重要性nn.Linear(channel, channel // reduction, bias=False), # 降维,减少参数数量和计算量nn.ReLU(inplace=True), # ReLU激活函数,引入非线性nn.Linear(channel // reduction, channel, bias=False), # 升维,恢复到原始通道数nn.Sigmoid() # Sigmoid激活函数,输出每个通道的重要性系数)# 权重初始化方法def init_weights(self):for m in self.modules(): # 遍历模块中的所有子模块if isinstance(m, nn.Conv2d): # 对于卷积层init.kaiming_normal_(m.weight, mode='fan_out') # 使用Kaiming初始化方法初始化权重if m.bias is not None:init.constant_(m.bias, 0) # 如果有偏置项,则初始化为0elif isinstance(m, nn.BatchNorm2d): # 对于批归一化层init.constant_(m.weight, 1) # 权重初始化为1init.constant_(m.bias, 0) # 偏置初始化为0elif isinstance(m, nn.Linear): # 对于全连接层init.normal_(m.weight, std=0.001) # 权重使用正态分布初始化if m.bias is not None:init.constant_(m.bias, 0) # 偏置初始化为0# 前向传播方法def forward(self, x):b, c, _, _ = x.size() # 获取输入x的批量大小b和通道数cy = self.avg_pool(x).view(b, c) # 通过自适应平均池化层后,调整形状以匹配全连接层的输入y = self.fc(y).view(b, c, 1, 1) # 通过全连接层计算通道重要性,调整形状以匹配原始特征图的形状return x * y.expand_as(x) # 将通道重要性系数应用到原始特征图上,进行特征重新校准# 示例使用
if __name__ == '__main__':input = torch.randn(50, 512, 7, 7) # 随机生成一个输入特征图se = SEAttention(channel=512, reduction=8) # 实例化SE模块,设置降维比率为8output = se(input) # 将输入特征图通过SE模块进行处理print(output.shape) # 打印处理后的特征图形状,验证SE模块的作用

打印处理后的形状,我们这里要注意,缝合模块时只需要注意第一维,也就是这个channel,要和骨干网络保持一致,只要你把输入输出的通道数对齐,那么这个通道数就可以缝合成功。
把模块复制进骨干网络中:

然后进行缝合,在缝合之前要先测试通道是否匹配,不然肯定报错。
如何验证通道数
我们找到骨干网络前向传播的部分,在你想加入这个模块地方print(x.shape)即可。运行训练文件:
放在最前面:

![]()
通道数为3(8为batch size)。
将模块添加进骨干网络
在骨干网络的init函数下添加:(ctrl+p可查看参数)通道数与之前查的对齐。

在前向传播中添加:

看看是否正常运行:
![]()
正常运行,说明模块缝合成功!
打印缝合后的模型结构
该操作在模型文件中进行。

VisionTransformer(
(patch_embed): PatchEmbed(
(proj): Conv2d(3, 768, kernel_size=(16, 16), stride=(16, 16))
(norm): Identity()
)
(pos_drop): Dropout(p=0.0, inplace=False)
(blocks): Sequential(
(0): Block(
(norm1): LayerNorm((768,), eps=1e-06, elementwise_affine=True)
(attn): Attention(
(qkv): Linear(in_features=768, out_features=2304, bias=True)
(attn_drop): Dropout(p=0.0, inplace=False)
(proj): Linear(in_features=768, out_features=768, bias=True)
(proj_drop): Dropout(p=0.0, inplace=False)
)
(drop_path): Identity()
(norm2): LayerNorm((768,), eps=1e-06, elementwise_affine=True)
(mlp): Mlp(
(fc1): Linear(in_features=768, out_features=3072, bias=True)
(act): GELU()
(fc2): Linear(in_features=3072, out_features=768, bias=True)
(drop): Dropout(p=0.0, inplace=False)
)
)
(1): Block(
(norm1): LayerNorm((768,), eps=1e-06, elementwise_affine=True)
(attn): Attention(
(qkv): Linear(in_features=768, out_features=2304, bias=True)
(attn_drop): Dropout(p=0.0, inplace=False)
(proj): Linear(in_features=768, out_features=768, bias=True)
(proj_drop): Dropout(p=0.0, inplace=False)
)
(drop_path): Identity()
(norm2): LayerNorm((768,), eps=1e-06, elementwise_affine=True)
(mlp): Mlp(
(fc1): Linear(in_features=768, out_features=3072, bias=True)
(act): GELU()
(fc2): Linear(in_features=3072, out_features=768, bias=True)
(drop): Dropout(p=0.0, inplace=False)
)
)
(2): Block(
(norm1): LayerNorm((768,), eps=1e-06, elementwise_affine=True)
(attn): Attention(
(qkv): Linear(in_features=768, out_features=2304, bias=True)
(attn_drop): Dropout(p=0.0, inplace=False)
(proj): Linear(in_features=768, out_features=768, bias=True)
(proj_drop): Dropout(p=0.0, inplace=False)
)
(drop_path): Identity()
(norm2): LayerNorm((768,), eps=1e-06, elementwise_affine=True)
(mlp): Mlp(
(fc1): Linear(in_features=768, out_features=3072, bias=True)
(act): GELU()
(fc2): Linear(in_features=3072, out_features=768, bias=True)
(drop): Dropout(p=0.0, inplace=False)
)
)
(3): Block(
(norm1): LayerNorm((768,), eps=1e-06, elementwise_affine=True)
(attn): Attention(
(qkv): Linear(in_features=768, out_features=2304, bias=True)
(attn_drop): Dropout(p=0.0, inplace=False)
(proj): Linear(in_features=768, out_features=768, bias=True)
(proj_drop): Dropout(p=0.0, inplace=False)
)
(drop_path): Identity()
(norm2): LayerNorm((768,), eps=1e-06, elementwise_affine=True)
(mlp): Mlp(
(fc1): Linear(in_features=768, out_features=3072, bias=True)
(act): GELU()
(fc2): Linear(in_features=3072, out_features=768, bias=True)
(drop): Dropout(p=0.0, inplace=False)
)
)
(4): Block(
(norm1): LayerNorm((768,), eps=1e-06, elementwise_affine=True)
(attn): Attention(
(qkv): Linear(in_features=768, out_features=2304, bias=True)
(attn_drop): Dropout(p=0.0, inplace=False)
(proj): Linear(in_features=768, out_features=768, bias=True)
(proj_drop): Dropout(p=0.0, inplace=False)
)
(drop_path): Identity()
(norm2): LayerNorm((768,), eps=1e-06, elementwise_affine=True)
(mlp): Mlp(
(fc1): Linear(in_features=768, out_features=3072, bias=True)
(act): GELU()
(fc2): Linear(in_features=3072, out_features=768, bias=True)
(drop): Dropout(p=0.0, inplace=False)
)
)
(5): Block(
(norm1): LayerNorm((768,), eps=1e-06, elementwise_affine=True)
(attn): Attention(
(qkv): Linear(in_features=768, out_features=2304, bias=True)
(attn_drop): Dropout(p=0.0, inplace=False)
(proj): Linear(in_features=768, out_features=768, bias=True)
(proj_drop): Dropout(p=0.0, inplace=False)
)
(drop_path): Identity()
(norm2): LayerNorm((768,), eps=1e-06, elementwise_affine=True)
(mlp): Mlp(
(fc1): Linear(in_features=768, out_features=3072, bias=True)
(act): GELU()
(fc2): Linear(in_features=3072, out_features=768, bias=True)
(drop): Dropout(p=0.0, inplace=False)
)
)
(6): Block(
(norm1): LayerNorm((768,), eps=1e-06, elementwise_affine=True)
(attn): Attention(
(qkv): Linear(in_features=768, out_features=2304, bias=True)
(attn_drop): Dropout(p=0.0, inplace=False)
(proj): Linear(in_features=768, out_features=768, bias=True)
(proj_drop): Dropout(p=0.0, inplace=False)
)
(drop_path): Identity()
(norm2): LayerNorm((768,), eps=1e-06, elementwise_affine=True)
(mlp): Mlp(
(fc1): Linear(in_features=768, out_features=3072, bias=True)
(act): GELU()
(fc2): Linear(in_features=3072, out_features=768, bias=True)
(drop): Dropout(p=0.0, inplace=False)
)
)
(7): Block(
(norm1): LayerNorm((768,), eps=1e-06, elementwise_affine=True)
(attn): Attention(
(qkv): Linear(in_features=768, out_features=2304, bias=True)
(attn_drop): Dropout(p=0.0, inplace=False)
(proj): Linear(in_features=768, out_features=768, bias=True)
(proj_drop): Dropout(p=0.0, inplace=False)
)
(drop_path): Identity()
(norm2): LayerNorm((768,), eps=1e-06, elementwise_affine=True)
(mlp): Mlp(
(fc1): Linear(in_features=768, out_features=3072, bias=True)
(act): GELU()
(fc2): Linear(in_features=3072, out_features=768, bias=True)
(drop): Dropout(p=0.0, inplace=False)
)
)
(8): Block(
(norm1): LayerNorm((768,), eps=1e-06, elementwise_affine=True)
(attn): Attention(
(qkv): Linear(in_features=768, out_features=2304, bias=True)
(attn_drop): Dropout(p=0.0, inplace=False)
(proj): Linear(in_features=768, out_features=768, bias=True)
(proj_drop): Dropout(p=0.0, inplace=False)
)
(drop_path): Identity()
(norm2): LayerNorm((768,), eps=1e-06, elementwise_affine=True)
(mlp): Mlp(
(fc1): Linear(in_features=768, out_features=3072, bias=True)
(act): GELU()
(fc2): Linear(in_features=3072, out_features=768, bias=True)
(drop): Dropout(p=0.0, inplace=False)
)
)
(9): Block(
(norm1): LayerNorm((768,), eps=1e-06, elementwise_affine=True)
(attn): Attention(
(qkv): Linear(in_features=768, out_features=2304, bias=True)
(attn_drop): Dropout(p=0.0, inplace=False)
(proj): Linear(in_features=768, out_features=768, bias=True)
(proj_drop): Dropout(p=0.0, inplace=False)
)
(drop_path): Identity()
(norm2): LayerNorm((768,), eps=1e-06, elementwise_affine=True)
(mlp): Mlp(
(fc1): Linear(in_features=768, out_features=3072, bias=True)
(act): GELU()
(fc2): Linear(in_features=3072, out_features=768, bias=True)
(drop): Dropout(p=0.0, inplace=False)
)
)
(10): Block(
(norm1): LayerNorm((768,), eps=1e-06, elementwise_affine=True)
(attn): Attention(
(qkv): Linear(in_features=768, out_features=2304, bias=True)
(attn_drop): Dropout(p=0.0, inplace=False)
(proj): Linear(in_features=768, out_features=768, bias=True)
(proj_drop): Dropout(p=0.0, inplace=False)
)
(drop_path): Identity()
(norm2): LayerNorm((768,), eps=1e-06, elementwise_affine=True)
(mlp): Mlp(
(fc1): Linear(in_features=768, out_features=3072, bias=True)
(act): GELU()
(fc2): Linear(in_features=3072, out_features=768, bias=True)
(drop): Dropout(p=0.0, inplace=False)
)
)
(11): Block(
(norm1): LayerNorm((768,), eps=1e-06, elementwise_affine=True)
(attn): Attention(
(qkv): Linear(in_features=768, out_features=2304, bias=True)
(attn_drop): Dropout(p=0.0, inplace=False)
(proj): Linear(in_features=768, out_features=768, bias=True)
(proj_drop): Dropout(p=0.0, inplace=False)
)
(drop_path): Identity()
(norm2): LayerNorm((768,), eps=1e-06, elementwise_affine=True)
(mlp): Mlp(
(fc1): Linear(in_features=768, out_features=3072, bias=True)
(act): GELU()
(fc2): Linear(in_features=3072, out_features=768, bias=True)
(drop): Dropout(p=0.0, inplace=False)
)
)
)
(norm): LayerNorm((768,), eps=1e-06, elementwise_affine=True)
(pre_logits): Sequential(
(fc): Linear(in_features=768, out_features=768, bias=True)
(act): Tanh()
)
(head): Linear(in_features=768, out_features=21843, bias=True)
(se): SEAttention(
(avg_pool): AdaptiveAvgPool2d(output_size=1)
(fc): Sequential(
(0): Linear(in_features=3, out_features=0, bias=False)
(1): ReLU(inplace=True)
(2): Linear(in_features=0, out_features=3, bias=False)
(3): Sigmoid()
)
)
)
我们可以看到多了一个SEAttention,说明模块缝合进去了!

1.3 模块之间缝合
以SENet和ECA模块为例。

串联模块
方式1
同1.2。照猫画虎。(注意通道数保持一致)


打印模型结构:
ECAAttention(
(gap): AdaptiveAvgPool2d(output_size=1)
(conv): Conv1d(1, 1, kernel_size=(3,), stride=(1,), padding=(1,))
(sigmoid): Sigmoid()
(se): SEAttention(
(avg_pool): AdaptiveAvgPool2d(output_size=1)
(fc): Sequential(
(0): Linear(in_features=64, out_features=4, bias=False)
(1): ReLU(inplace=True)
(2): Linear(in_features=4, out_features=64, bias=False)
(3): Sigmoid()
)))
方式2
我们定义一个串联函数,将模块之间串联起来:

实例化查看一下模型结构

输出结果:
torch.Size([1, 63, 64, 64]) torch.Size([1, 63, 64, 64])
Cascade(
(se): SEAttention(
(avg_pool): AdaptiveAvgPool2d(output_size=1)
(fc): Sequential(
(0): Linear(in_features=63, out_features=3, bias=False)
(1): ReLU(inplace=True)
(2): Linear(in_features=3, out_features=63, bias=False)
(3): Sigmoid()
)
)
(eca): ECAAttention(
(gap): AdaptiveAvgPool2d(output_size=1)
(conv): Conv1d(1, 1, kernel_size=(63,), stride=(1,), padding=(31,))
(sigmoid): Sigmoid()
)
)
并联模块
对于并联模块,方法有很多种,两个两个模块输出的张量可以:
(1)逐元素相加(2)逐元素相乘(3)concat拼接(4)等等

输出结果:
torch.Size([1, 63, 64, 64]) torch.Size([1, 126, 64, 64])
Cascade(
(se): SEAttention(
(avg_pool): AdaptiveAvgPool2d(output_size=1)
(fc): Sequential(
(0): Linear(in_features=63, out_features=3, bias=False)
(1): ReLU(inplace=True)
(2): Linear(in_features=3, out_features=63, bias=False)
(3): Sigmoid()
)
)
(eca): ECAAttention(
(gap): AdaptiveAvgPool2d(output_size=1)
(conv): Conv1d(1, 1, kernel_size=(63,), stride=(1,), padding=(31,))
(sigmoid): Sigmoid()
)
)
1.4 思考
我们不要拘泥于只串联获并联,可以将二者结合,多个模块中,部分模块并联后又与其他模块串联,等等。。这种排列组合之后,总会有一个你想要的模型!!!
相关文章:
CV05_深度学习模块之间的缝合教学(1)
1.1 在哪里缝 测试文件?() 训练文件?() 模型文件?(√) 1.2 骨干网络与模块缝合 以Vision Transformer为例,模型文件里有很多类,我们只在最后…...
【密码学】公钥密码的基本概念
在先前我写的密码学体制文章中谈到,现代密码学分为两大体制,介绍了一些有关对称密码体制诸如流密码和分组密码的内容。本文的主要内容则切换到公钥密码体制(又称非对称密码体制),简述了公钥密码体制的基本思想和应用方…...
【前端项目笔记】10 项目优化上线
项目优化上线 目标:优化Vue项目部署Vue项目(上线提供使用) 项目优化 项目优化策略: 生成打包报告:根据生成的报告发现问题并解决第三方库启用CDN:提高首屏页面的加载效率Element-UI组件按需加载路由懒加…...
Qt基础控件总结—多页面切换(QStackWidget类、QTabBar类和QTabWidget类)
QStackedWidget 类 QStackedWidget 类是在 QStackedLayout 之上构造的一个便利的部件,其使用方法与步骤和 QStackedLayout 是一样的。QStackedWidget 类的成员函数与 QStackedLayout 类也基本上是一致的,使用该类就和使用 QStackedLayout 一样。 使用该类可以参考QStackedL…...
团队融合与业务突破
结束了在上海久事集团下属公司的《团队融合与业务突破》课程,不仅探讨了团队领导力的关键技巧,更重要的是,我们从业务协同的视角,在跨团队中如何达成了共识,结合系统思考的相关内容,让大家看到跨部门冲突的…...
mybatilsplaus 常用注解
官网地址 baomidou注解配置...
vue引入sm-crypto通过sm4对文件进行加解密,用户输入密码
对文件加密并保存: import { sm4 } from sm-cryptofetch("你的文件地址") .then(response > response.blob()) .then(byteStream > {const reader2 new FileReader();reader2.onload function(event) {const arrayBuffer event.target.result;l…...
vue3实现无缝滚动列表(大屏数据轮播场景)
实现思路 vue3目前可以通过第三方组件来实现这个需求。 下面介绍一下这个第三方滚动组件--vue3-scroll-seamless vue3-scroll-seamless 是一个用于 Vue 3 的插件,用于实现无缝滚动的组件。它可以让内容在水平或垂直方向上无缝滚动,适用于展示轮播图、新…...
element ui ts table重置排序
#日常# 今天带的实习生,在遇到开发过程中,遇到了element ui table 每次查询的时候都需要重置排序方式,而且多个排序是由前端排序。 <el-table :data"tableData" ref"restTable"> </<el-table> <script…...
python热门面试题三
面试题1:Python中的列表推导式是什么?请给出一个例子。 回答: 列表推导式(List Comprehension)是Python中一种非常强大且简洁的构建列表的工具。它允许你通过一个表达式来创建一个新的列表,这个表达式定义…...
sql monitoring 长SQL ASH AWR 都没有 未Commit or export to csv
Duration 4小时, Database Time 22.5, Session Inactive, 1.未Commit原因, 2.慢慢导出成csv文件? How is v$session status INACTIVE and v$sql_monitor status EXECUTING concurrently 2641811 Posts: 8 Jan 11, 2016 6:47P…...
算法学习day12(动态规划)
一、不同的二叉搜索树 二叉搜索树的性质:父节点比左边的孩子节点都大;比右边的孩子节点都小; 由图片可知,dp[3]是可以由dp[2]和dp[1]得出来的。(二叉搜索树的种类和根节点的val有关) 当val为1时,左边是一定没有节点的…...
Vue 3 <script setup> 使用v-bind(或简写为 :)来动态绑定图片的 src 属性
<img :src"images[currentIndex]" > <template> <div> <!-- 使用 v-bind 或简写为 : 来动态绑定图片的 src 属性 --> <img :src"images[currentIndex]" alt"Dynamic Image" style"width: 100px; height: a…...
前端Vue自定义签到获取积分弹框组件设计与实现
摘要 随着前端技术的不断演进,开发的复杂性日益凸显。传统的整体式开发方式在面临功能迭代和修改时,常常牵一发而动全身,导致开发效率低下和维护成本高昂。组件化开发作为一种解决方案,通过实现模块的独立开发和维护,…...
闲置服务器废物利用_离线下载_私人影院_个人博客_私人云笔记_文件服务器
背景 家里有台旧windows笔记本,PentiumB940 2.00GHz的cpu 4G内存,512G硬盘 放在家里吃灰很久,最近几个月折腾折腾,装了linux操作系统,换了一个2T的硬盘 这里记录下折腾的过程,有需要的可以参考 开通公网IP 打电话给运营商一般都可…...
【Python学习笔记】调参工具Optuna + 泰坦尼克号案例
【Python学习笔记】调参工具Optuna&泰坦尼克号案例 背景前摇:(省流可不看) 最近找了份AI标注师的实习,但是全程都在做文本相关的活,本质上还是拧螺丝,就想着学点调参、部署什么的技能增加一些竞争力&a…...
GPT带我学-设计模式13-策略模式
概述 策略模式 例子 你可以创建一个策略工厂(Strategy Factory)来根据传入的 orgId 动态地选择合适的策略。以下是实现示例: 首先,定义策略接口和具体策略类: public interface CardPathStrategy {String generat…...
【Linux】Ubuntu配置JDK环境、MySQL环境
一、 Ubuntu配置JDK环境 在Ubuntu系统中安装JDK 8可以通过以下步骤进行: 打开终端。更新包列表: sudo apt update安装OpenJDK 8: sudo apt install openjdk-8-jdk验证安装是否成功: java -version注:如果系统中安…...
【ElasticSearch】ES 5.6.15 向量插件支持
参考 : https://github.com/lior-k/fast-elasticsearch-vector-scoring 下载插件 安装插件 插件目录: elasticsearch/plugins, 安装后的目录如下 plugins└── vector├── elasticsearch-binary-vector-scoring-5.6.9.jar└── plugin-descriptor.properties修…...
Kafka 高并发设计之数据压缩与批量消息处理
《Kafka 高性能架构设计 7 大秘诀》专栏第 6 章。 压缩,是一种用时间换空间的 trade-off 思想,用 CPU 的时间去换磁盘或者网络 I/O 传输量,用较小的 CPU 开销来换取更具性价比的磁盘占用和更少的网络 I/O 传输。 Kafka 是一个高吞吐量、可扩展…...
wordpress后台更新后 前端没变化的解决方法
使用siteground主机的wordpress网站,会出现更新了网站内容和修改了php模板文件、js文件、css文件、图片文件后,网站没有变化的情况。 不熟悉siteground主机的新手,遇到这个问题,就很抓狂,明明是哪都没操作错误&#x…...
【根据当天日期输出明天的日期(需对闰年做判定)。】2022-5-15
缘由根据当天日期输出明天的日期(需对闰年做判定)。日期类型结构体如下: struct data{ int year; int month; int day;};-编程语言-CSDN问答 struct mdata{ int year; int month; int day; }mdata; int 天数(int year, int month) {switch (month){case 1: case 3:…...
PPT|230页| 制造集团企业供应链端到端的数字化解决方案:从需求到结算的全链路业务闭环构建
制造业采购供应链管理是企业运营的核心环节,供应链协同管理在供应链上下游企业之间建立紧密的合作关系,通过信息共享、资源整合、业务协同等方式,实现供应链的全面管理和优化,提高供应链的效率和透明度,降低供应链的成…...
【第二十一章 SDIO接口(SDIO)】
第二十一章 SDIO接口 目录 第二十一章 SDIO接口(SDIO) 1 SDIO 主要功能 2 SDIO 总线拓扑 3 SDIO 功能描述 3.1 SDIO 适配器 3.2 SDIOAHB 接口 4 卡功能描述 4.1 卡识别模式 4.2 卡复位 4.3 操作电压范围确认 4.4 卡识别过程 4.5 写数据块 4.6 读数据块 4.7 数据流…...
C++ 基础特性深度解析
目录 引言 一、命名空间(namespace) C 中的命名空间 与 C 语言的对比 二、缺省参数 C 中的缺省参数 与 C 语言的对比 三、引用(reference) C 中的引用 与 C 语言的对比 四、inline(内联函数…...
HBuilderX安装(uni-app和小程序开发)
下载HBuilderX 访问官方网站:https://www.dcloud.io/hbuilderx.html 根据您的操作系统选择合适版本: Windows版(推荐下载标准版) Windows系统安装步骤 运行安装程序: 双击下载的.exe安装文件 如果出现安全提示&…...
《基于Apache Flink的流处理》笔记
思维导图 1-3 章 4-7章 8-11 章 参考资料 源码: https://github.com/streaming-with-flink 博客 https://flink.apache.org/bloghttps://www.ververica.com/blog 聚会及会议 https://flink-forward.orghttps://www.meetup.com/topics/apache-flink https://n…...
MySQL用户和授权
开放MySQL白名单 可以通过iptables-save命令确认对应客户端ip是否可以访问MySQL服务: test: # iptables-save | grep 3306 -A mp_srv_whitelist -s 172.16.14.102/32 -p tcp -m tcp --dport 3306 -j ACCEPT -A mp_srv_whitelist -s 172.16.4.16/32 -p tcp -m tcp -…...
用机器学习破解新能源领域的“弃风”难题
音乐发烧友深有体会,玩音乐的本质就是玩电网。火电声音偏暖,水电偏冷,风电偏空旷。至于太阳能发的电,则略显朦胧和单薄。 不知你是否有感觉,近两年家里的音响声音越来越冷,听起来越来越单薄? —…...
LOOI机器人的技术实现解析:从手势识别到边缘检测
LOOI机器人作为一款创新的AI硬件产品,通过将智能手机转变为具有情感交互能力的桌面机器人,展示了前沿AI技术与传统硬件设计的完美结合。作为AI与玩具领域的专家,我将全面解析LOOI的技术实现架构,特别是其手势识别、物体识别和环境…...
