Kafka 高并发设计之数据压缩与批量消息处理
《Kafka 高性能架构设计 7 大秘诀》专栏第 6 章。
压缩,是一种用时间换空间的 trade-off 思想,用 CPU 的时间去换磁盘或者网络 I/O 传输量,用较小的 CPU 开销来换取更具性价比的磁盘占用和更少的网络 I/O 传输。
Kafka 是一个高吞吐量、可扩展的分布式消息系统,深入掌握 Kafka 的数据压缩和批量数据处理机制,对于优化系统性能和资源使用至关重要。
Kafka 数据压缩机制
数据压缩在 Kafka 中有助于减少磁盘空间的使用和网络带宽的消耗,从而提升整体性能。
通过减少消息的大小,压缩可以显著降低生产者和消费者之间的数据传输时间。
Chaya:Kafka 支持的压缩算法有哪些?
在 Kafka 2.1.0 版本之前,Kafka 支持 3 种压缩算法:GZIP、Snappy 和 LZ4。从 2.1.0 开始,Kafka 正式支持 Zstandard 算法(简写为 zstd)。
Chaya:这么多压缩算法,我如何选择?
一个压缩算法的优劣,有两个重要的指标:压缩比,文件压缩前的大小与压缩后的大小之比,比如源文件占用 1000 M 内存,经过压缩后变成了 200 M,压缩比 = 1000 /200 = 5,压缩比越高越高;另一个指标是压缩/解压缩吞吐量,比如每秒能压缩或者解压缩多少 M 数据,吞吐量越高越好。
如下图是 Facebook Zstandard 官网提供的一份压缩算法 benchmark 比较结果:
从图中可以看到,ZSTD 压缩比最高,但是吞吐量中规中矩。LZ4 在吞吐量方面属于王者。
GZIP:压缩比高,但压缩和解压缩速度相对较慢。适用于对传输带宽要求较高的场景。
Snappy:由 Google 开发,压缩和解压缩速度快,但压缩比相对较低。适用于对性能要求较高的场景。
LZ4:在压缩和解压缩速度以及压缩比之间取得良好平衡。适用于对性能和压缩比有综合需求的场景。
ZSTD:由 Facebook 开发,提供高压缩比和较快的压缩解压速度。适用于对高效压缩和快速处理都有需求的场景。
在 Kafka 的性能测试结果中,不同压缩算法的两个指标有以下排序特点。
吞吐量方面:LZ4 > Snappy > zstd 和 GZIP;
压缩比方面:zstd > LZ4 > GZIP > Snappy。
何时压缩
Chaya:我觉得可以在生产者和 Broker 端进行压缩,对么?
在生产者端压缩是很自然的想法,大部分情况下 Broker 收到 Producer 端的消息后是原封不动的保存,并不会进行压缩。
生产者压缩
Kafka 的数据压缩主要在生产者端进行。具体步骤如下:
生产者配置压缩方式:在 KafkaProducer 配置中设置
compression.type参数,可以选择gzip、snappy、lz4或zstd。消息压缩:生产者将消息批量收集到一个
batch中,然后对整个batch进行压缩。这种批量压缩方式可以获得更高的压缩率。压缩消息存储:压缩后的
batch以压缩格式存储在 Kafka 的主题(Topic)分区中。消费者解压缩:消费者从 Kafka 主题中获取消息时,首先对接收到的
batch进行解压缩,然后处理其中的每一条消息。
相关文章:
Kafka 高并发设计之数据压缩与批量消息处理
《Kafka 高性能架构设计 7 大秘诀》专栏第 6 章。 压缩,是一种用时间换空间的 trade-off 思想,用 CPU 的时间去换磁盘或者网络 I/O 传输量,用较小的 CPU 开销来换取更具性价比的磁盘占用和更少的网络 I/O 传输。 Kafka 是一个高吞吐量、可扩展…...
设计模式使用场景实现示例及优缺点(行为型模式——模板方法模式)
模板方法模式(Template Method Pattern) 模板方法模式(Template Method Pattern)是一种行为设计模式,它定义了一个操作中的算法的骨架,将算法的一些步骤延迟到子类中。这样可以在不改变算法的结构的前提下…...
ETL数据集成丨主流ETL工具(ETLCloud、DataX、Kettle)数据传输性能大PK
目前市面上的ETL工具众多,为了方便广大企业用户在选择ETL工具时有一个更直观性能方面的参考值,我们选取了目前市面上最流行的三款ETL工具(ETLCloud、DataX、Kettle)来作为本次性能传输的代表,虽然性能测试数据有很多相…...
eNSP:防火墙设置模拟公司配置(二)
实验拓扑: 实验要求(二): 7: 办公设备可以通过电信连接和移动上网(多对多NAT,并且需要保留一个公网IP) 8: 分公司通过公网移动电信,访问DMZ的http服务器 9&a…...
vue3 两个组件之间传值
Props 父组件可以通过 props 将数据传递给子组件。这是最常见的组件间通信方式 <!-- 父组件 --><template><ChildComponent :message"parentMessage" /></template><script>import ChildComponent from ./ChildComponent.vue;export…...
基于matlab的深度学习案例及基础知识专栏前言
专栏简介 内容涵盖深度学习基础知识、深度学习典型案例、深度学习工程文件、信号处理等相关内容,博客由基于matlab的深度学习案例、matlab基础知识、matlab图像基础知识和matlab信号处理基础知识四部分组成。 一、 基于matlab的深度学习案例 1.1、matlab:基于模…...
机器学习——L1 L2 范数 —>L1 L2正则化
1、L1范数和L2范数是机器学习和数据分析中经常使用的两种范数,它们之间存在多个方面的区别。 以下是关于L1范数和L2范数区别的详细解释: 一、定义差异 L1范数:也被称为曼哈顿范数,是向量元素的绝对值之和。对于一个n维向量x&am…...
大模型时代,还需要跨端framework吗?
跨端 在我近十年的大前端从业经验中,有一半是在和flutter/rn打交道。虽然,flutter和rn官方和社区已经在非常努力的优化、填坑了,但是这两者的坑还是远远高于原生开发。 但是,在锁表的大周期下,华为带着鸿蒙来了&#…...
ASP.NET Core----基础学习05----将数据传递给视图文件的五种情况
文章目录 1. 类型一:使用ViewData将数据传递给视图文件(默认视图文件)2. 类型二:自定义选择视图文件 并传递ViewData数据3. 类型三:使用ViewBag将数据传递给视图文件4. 类型四:在视图文件中使用model转化为…...
Flutter实现局部刷新的几种方式
目录 前言 1.局部刷新的重要性 1.概念 2.重要性 2.局部刷新实现的几种方式 1.使用setState方法进行局部刷新 2.使用StatefulWidget和InheritedWidget局部刷新UI 3.ValueNotifier和ValueListenableBuilder 4.StreamBuilder 5.Provider 6.GetX 7.使用GlobalKey 前言 …...
力扣题解(回文子串)
647. 回文子串 给你一个字符串 s ,请你统计并返回这个字符串中 回文子串 的数目。 回文字符串 是正着读和倒过来读一样的字符串。 子字符串 是字符串中的由连续字符组成的一个序列。 思路: 首先,本题要求的是数目,而且不要求没…...
对数的基本概念
概念 在数学中,对数是对求幂的逆运算,正如除法是乘法的倒数,反之亦然。这意味着一个数字的对数是必须产生过另一个固定数字(基数)的指数 如果a的x次方等于N(a > 0, 且a不等于1),那么数x叫做以a为底N的…...
C双指针滑动窗口算法
这也许是双指针技巧的最⾼境界了,如果掌握了此算法,可以解决⼀⼤类⼦字符串匹配的问题 原理 1、我们在字符串 S 中使⽤双指针中的左右指针技巧,初始化 left right 0,把索引闭区间 [left, right] 称为⼀个「窗⼝」。 2、我们先…...
WPF学习(6) -- WPF命令和通知
一 、WPF命令 1.ICommand代码 创建一个文件夹和文件 using System; using System.Collections.Generic; using System.Linq; using System.Text; using System.Threading.Tasks; using System.Windows.Input;namespace 学习.Command {public class MyCommand : ICommand{Acti…...
升级到LVGL9的一些变化(后续发现再补充)
目录 一、主要内容 二、新增内容 三、常规API变化 四、Display API(显示API) 五、其他 最近在将LVGL8的demo代码升级到LVGL9,带来不小的变化 ,收集网上的一些内容,整理如下: 一、主要内容 二、新增内容 三、常规API变化 四、Display API(显示API)...
当在多线程环境中使用 C++进行编程时,怎样确保线程安全以及如何处理线程之间的同步和通信?
在C中确保线程安全性和处理线程之间的同步和通信有多种方法。下面是一些常用的技术和技巧: 互斥锁:使用互斥锁可以确保只有一个线程可以访问共享资源。在访问共享资源之前获取锁,在完成后释放锁。这可以防止多个线程同时访问同一份数据&#…...
博物馆地图导航系统:高精度地图引擎与AR/VR融合,实现博物馆数字化转型
在人民日益追求精神文化的时代下,博物馆作为传承与展示人类文明的璀璨殿堂,其重要性不言而喻。然而,随着博物馆规模的不断扩大和藏品种类的日益丰富,游客在享受知识盛宴的同时,也面临着“迷路”与“错过”的困扰。博物…...
liunx作业笔记1
一、选择题(每小题2分,共20分) 1、下列变量命名为Shell中无效变量名的是( D ) A、v_ar1 B、var1 C、_var D、*var 变量名以字母开头,包含下划线和数字。 2、关于expr命令的使用下列命令中得数不等于…...
大话C语言:第31篇 指针和数组的关系
数组在内存中是连续存放的,其名称代表了数组首元素的首地址,该地址是常量, 也就是一个指向数组首元素的指针。因此,指针和数组有着密切的关系: 可以使用指针来访问和操作数组中的元素。通过指针的算术运算,…...
Mysql-索引应用
目录 索引应用 MySQL有哪些索引? 普通索引和唯一索引有什么区别? 哪个更新性能更好? 、 聚簇索引的主键索引怎么设置? 追问:假如你不设置会怎么样? 我们一般选择什么样的字段来建立索引? 索引越多越好吗? 索引怎么优化? (覆盖索引优化、防止索引失效、…...
【JavaEE】-- HTTP
1. HTTP是什么? HTTP(全称为"超文本传输协议")是一种应用非常广泛的应用层协议,HTTP是基于TCP协议的一种应用层协议。 应用层协议:是计算机网络协议栈中最高层的协议,它定义了运行在不同主机上…...
在鸿蒙HarmonyOS 5中实现抖音风格的点赞功能
下面我将详细介绍如何使用HarmonyOS SDK在HarmonyOS 5中实现类似抖音的点赞功能,包括动画效果、数据同步和交互优化。 1. 基础点赞功能实现 1.1 创建数据模型 // VideoModel.ets export class VideoModel {id: string "";title: string ""…...
day52 ResNet18 CBAM
在深度学习的旅程中,我们不断探索如何提升模型的性能。今天,我将分享我在 ResNet18 模型中插入 CBAM(Convolutional Block Attention Module)模块,并采用分阶段微调策略的实践过程。通过这个过程,我不仅提升…...
Admin.Net中的消息通信SignalR解释
定义集线器接口 IOnlineUserHub public interface IOnlineUserHub {/// 在线用户列表Task OnlineUserList(OnlineUserList context);/// 强制下线Task ForceOffline(object context);/// 发布站内消息Task PublicNotice(SysNotice context);/// 接收消息Task ReceiveMessage(…...
MongoDB学习和应用(高效的非关系型数据库)
一丶 MongoDB简介 对于社交类软件的功能,我们需要对它的功能特点进行分析: 数据量会随着用户数增大而增大读多写少价值较低非好友看不到其动态信息地理位置的查询… 针对以上特点进行分析各大存储工具: mysql:关系型数据库&am…...
关于nvm与node.js
1 安装nvm 安装过程中手动修改 nvm的安装路径, 以及修改 通过nvm安装node后正在使用的node的存放目录【这句话可能难以理解,但接着往下看你就了然了】 2 修改nvm中settings.txt文件配置 nvm安装成功后,通常在该文件中会出现以下配置&…...
Pinocchio 库详解及其在足式机器人上的应用
Pinocchio 库详解及其在足式机器人上的应用 Pinocchio (Pinocchio is not only a nose) 是一个开源的 C 库,专门用于快速计算机器人模型的正向运动学、逆向运动学、雅可比矩阵、动力学和动力学导数。它主要关注效率和准确性,并提供了一个通用的框架&…...
让回归模型不再被异常值“带跑偏“,MSE和Cauchy损失函数在噪声数据环境下的实战对比
在机器学习的回归分析中,损失函数的选择对模型性能具有决定性影响。均方误差(MSE)作为经典的损失函数,在处理干净数据时表现优异,但在面对包含异常值的噪声数据时,其对大误差的二次惩罚机制往往导致模型参数…...
JVM虚拟机:内存结构、垃圾回收、性能优化
1、JVM虚拟机的简介 Java 虚拟机(Java Virtual Machine 简称:JVM)是运行所有 Java 程序的抽象计算机,是 Java 语言的运行环境,实现了 Java 程序的跨平台特性。JVM 屏蔽了与具体操作系统平台相关的信息,使得 Java 程序只需生成在 JVM 上运行的目标代码(字节码),就可以…...
深入浅出深度学习基础:从感知机到全连接神经网络的核心原理与应用
文章目录 前言一、感知机 (Perceptron)1.1 基础介绍1.1.1 感知机是什么?1.1.2 感知机的工作原理 1.2 感知机的简单应用:基本逻辑门1.2.1 逻辑与 (Logic AND)1.2.2 逻辑或 (Logic OR)1.2.3 逻辑与非 (Logic NAND) 1.3 感知机的实现1.3.1 简单实现 (基于阈…...
