【人工智能】Transformers之Pipeline(一):音频分类(audio-classification)
目录
一、引言
二、音频分类(audio-classification)
2.1 概述
2.2 技术原理
2.2.1 Wav2vec 2.0模型
2.2.1 HuBERT模型
2.3 pipeline参数
2.3.1 pipeline对象实例化参数
2.3.2 pipeline对象使用参数
2.4 pipeline实战
2.4.1 指令识别(默认模型)
2.4.2 情感识别
2.5 模型排名
三、总结
一、引言
pipeline(管道)是huggingface transformers库中一种极简方式使用大模型推理的抽象,将所有大模型分为音频(Audio)、计算机视觉(Computer vision)、自然语言处理(NLP)、多模态(Multimodal)等4大类,28小类任务(tasks)。共计覆盖32万个模型
今天介绍Audio音频的第一篇,音频分类(audio-classification),在huggingface库内共有2500个音频分类模型。
二、音频分类(audio-classification)
2.1 概述
音频分类,顾名思义就是将音频打标签或分配类别的任务。主要应用场景有语音情绪分类、语音命令分类、说话人分类、音乐风格判别、语言判别等。
2.2 技术原理
音频分类,主要思想就是将音频的音谱切分成25ms-60ms的片段,通过CNN等卷积神经网络模型提取特征并进行embedding化,基于transformer与文本类别对齐训练。下面介绍2个代表模型:
2.2.1 Wav2vec 2.0模型
Wav2vec 2.0是 Meta在2020年发表的无监督语音预训练模型。它的核心思想是通过向量量化(Vector Quantization,VQ)构造自建监督训练目标,对输入做大量掩码后利用对比学习损失函数进行训练。模型结构如图,基于卷积网络(Convoluational Neural Network,CNN)的特征提取器将原始音频编码为帧特征序列,通过 VQ 模块把每帧特征转变为离散特征 Q,并作为自监督目标。同时,帧特征序列做掩码操作后进入 Transformer [5] 模型得到上下文表示 C。最后通过对比学习损失函数,拉近掩码位置的上下文表示与对应的离散特征 q 的距离,即正样本对。
2.2.1 HuBERT模型
HuBERT是Meta在2021年发表的模型,模型结构类似 Wav2vec 2.0,不同的是训练方法。Wav2vec 2.0 是在训练时将语音特征离散化作为自监督目标,而 HuBERT 则通过在 MFCC 特征或 HuBERT 特征上做 K-means 聚类,得到训练目标。HuBERT 模型采用迭代训练的方式,BASE 模型第一次迭代在 MFCC 特征上做聚类,第二次迭代在第一次迭代得到的 HuBERT 模型的中间层特征上做聚类,LARGE 和 XLARGE 模型则用 BASE 模型的第二次迭代模型提取特征做聚类。从原始论文实验结果来看,HuBERT 模型效果要优于 Wav2vec 2.0,特别是下游任务有监督训练数据极少的情况,如 1 小时、10 分钟。
2.3 pipeline参数
2.3.1 pipeline对象实例化参数
- 模型(PreTrainedModel或TFPreTrainedModel)— 管道将使用其进行预测的模型。 对于 PyTorch,这需要从PreTrainedModel继承;对于 TensorFlow,这需要从TFPreTrainedModel继承。
- feature_extractor ( SequenceFeatureExtractor ) — 管道将使用的特征提取器来为模型编码数据。此对象继承自 SequenceFeatureExtractor。
- modelcard(
str
或ModelCard
,可选) — 属于此管道模型的模型卡。- framework(
str
,可选)— 要使用的框架,"pt"
适用于 PyTorch 或"tf"
TensorFlow。必须安装指定的框架。如果未指定框架,则默认为当前安装的框架。如果未指定框架且安装了两个框架,则默认为 的框架
model
,如果未提供模型,则默认为 PyTorch。- 任务(
str
,默认为""
)— 管道的任务标识符。- num_workers(
int
,可选,默认为 8)— 当管道将使用DataLoader(传递数据集时,在 Pytorch 模型的 GPU 上)时,要使用的工作者数量。- batch_size(
int
,可选,默认为 1)— 当管道将使用DataLoader(传递数据集时,在 Pytorch 模型的 GPU 上)时,要使用的批次的大小,对于推理来说,这并不总是有益的,请阅读使用管道进行批处理。- args_parser(ArgumentHandler,可选) - 引用负责解析提供的管道参数的对象。
- 设备(
int
,可选,默认为 -1)— CPU/GPU 支持的设备序号。将其设置为 -1 将利用 CPU,设置为正数将在关联的 CUDA 设备 ID 上运行模型。您可以传递本机torch.device
或str
太- torch_dtype(
str
或torch.dtype
,可选) - 直接发送model_kwargs
(只是一种更简单的快捷方式)以使用此模型的可用精度(torch.float16
,,torch.bfloat16
...或"auto"
)- binary_output(
bool
,可选,默认为False
)——标志指示管道的输出是否应以序列化格式(即 pickle)或原始输出数据(例如文本)进行。
2.3.2 pipeline对象使用参数
- 输入(
np.ndarray
或bytes
或str
或dict
) — 输入可以是:
str
这是音频文件的文件名,将以正确的采样率读取该文件以使用ffmpeg获取波形。这需要在系统上安装ffmpeg 。bytes
它应该是音频文件的内容,并以相同的方式由ffmpeg进行解释。- (
np.ndarray
形状为(n,)类型为np.float32
或np.float64
)正确采样率的原始音频(不再进行进一步检查)dict
形式可用于传递任意采样的原始音频sampling_rate
,并让此管道进行重新采样。字典必须采用 或 格式{"sampling_rate": int, "raw": np.array}
,{"sampling_rate": int, "array": np.array}
其中键"raw"
或"array"
用于表示原始音频波形。- top_k(
int
,可选,默认为 None)— 管道将返回的顶部标签数。如果提供的数字等于None
或高于模型配置中可用的标签数,则将默认为标签数。
2.4 pipeline实战
2.4.1 指令识别(默认模型)
pipeline对于audio-classification的默认模型时superb/wav2vec2-base-superb-ks,使用pipeline时,如果仅设置task=audio-classification,不设置模型,则下载并使用默认模型。
import os
os.environ["HF_ENDPOINT"] = "https://hf-mirror.com"
os.environ["CUDA_VISIBLE_DEVICES"] = "2"from transformers import pipelinespeech_file = "./output_video_enhanced.mp3"
pipe = pipeline(task="audio-classification")
result = pipe(speech_file)
print(result)
这是一个上下左右yes及no的指令识别模型,感觉像是训练动物。
[{'score': 0.9988580942153931, 'label': '_unknown_'}, {'score': 0.000909291033167392, 'label': 'down'}, {'score': 9.889943612506613e-05, 'label': 'no'}, {'score': 7.015655864961445e-05, 'label': 'yes'}, {'score': 5.134344974067062e-05, 'label': 'stop'}]
2.4.2 情感识别
我们指定模型为情感识别模型ehcalabres/wav2vec2-lg-xlsr-en-speech-emotion-recognition,具体代码为:
import os
os.environ["HF_ENDPOINT"] = "https://hf-mirror.com"
os.environ["CUDA_VISIBLE_DEVICES"] = "2"from transformers import pipelinespeech_file = "./output_video_enhanced.mp3"
pipe = pipeline(task="audio-classification",model="ehcalabres/wav2vec2-lg-xlsr-en-speech-emotion-recognition")
result = pipe(speech_file)
print(result)
输入为一段mp3格式的语音,输出为
[{'score': 0.13128453493118286, 'label': 'angry'}, {'score': 0.12990005314350128, 'label': 'calm'}, {'score': 0.1262471228837967, 'label': 'happy'}, {'score': 0.12568499147891998, 'label': 'surprised'}, {'score': 0.12327362596988678, 'label': 'disgust'}]
2.5 模型排名
在huggingface上,我们筛选音频分类模型,并按下载量从高到低排序:
三、总结
本文对transformers之pipeline的音频分类(audio-classification)从概述、技术原理、pipeline参数、pipeline实战、模型排名等方面进行介绍,读者可以基于pipeline使用文中的代码极简的进行音频分类推理,应用于音频情感识别、音乐曲风判断等业务场景。
期待您的3连+关注,如何还有时间,欢迎阅读我的其他文章:
《Transformers-Pipeline概述》
【人工智能】Transformers之Pipeline(概述):30w+大模型极简应用
《Transformers-Pipeline 第一章:音频(Audio)篇》
【人工智能】Transformers之Pipeline(一):音频分类(audio-classification)
【人工智能】Transformers之Pipeline(二):自动语音识别(automatic-speech-recognition)
【人工智能】Transformers之Pipeline(三):文本转音频(text-to-audio)
【人工智能】Transformers之Pipeline(四):零样本音频分类(zero-shot-audio-classification)
《Transformers-Pipeline 第二章:计算机视觉(CV)篇》
【人工智能】Transformers之Pipeline(五):深度估计(depth-estimation)
【人工智能】Transformers之Pipeline(六):图像分类(image-classification)
【人工智能】Transformers之Pipeline(七):图像分割(image-segmentation)
【人工智能】Transformers之Pipeline(八):图生图(image-to-image)
【人工智能】Transformers之Pipeline(九):物体检测(object-detection)
【人工智能】Transformers之Pipeline(十):视频分类(video-classification)
【人工智能】Transformers之Pipeline(十一):零样本图片分类(zero-shot-image-classification)
【人工智能】Transformers之Pipeline(十二):零样本物体检测(zero-shot-object-detection)
《Transformers-Pipeline 第三章:自然语言处理(NLP)篇》
【人工智能】Transformers之Pipeline(十三):填充蒙版(fill-mask)
【人工智能】Transformers之Pipeline(十四):问答(question-answering)
【人工智能】Transformers之Pipeline(十五):总结(summarization)
【人工智能】Transformers之Pipeline(十六):表格问答(table-question-answering)
【人工智能】Transformers之Pipeline(十七):文本分类(text-classification)
【人工智能】Transformers之Pipeline(十八):文本生成(text-generation)
【人工智能】Transformers之Pipeline(十九):文生文(text2text-generation)
【人工智能】Transformers之Pipeline(二十):令牌分类(token-classification)
【人工智能】Transformers之Pipeline(二十一):翻译(translation)
【人工智能】Transformers之Pipeline(二十二):零样本文本分类(zero-shot-classification)
《Transformers-Pipeline 第四章:多模态(Multimodal)篇》
【人工智能】Transformers之Pipeline(二十三):文档问答(document-question-answering)
【人工智能】Transformers之Pipeline(二十四):特征抽取(feature-extraction)
【人工智能】Transformers之Pipeline(二十五):图片特征抽取(image-feature-extraction)
【人工智能】Transformers之Pipeline(二十六):图片转文本(image-to-text)
【人工智能】Transformers之Pipeline(二十七):掩码生成(mask-generation)
【人工智能】Transformers之Pipeline(二十八):视觉问答(visual-question-answering)
相关文章:

【人工智能】Transformers之Pipeline(一):音频分类(audio-classification)
目录 一、引言 二、音频分类(audio-classification) 2.1 概述 2.2 技术原理 2.2.1 Wav2vec 2.0模型 2.2.1 HuBERT模型 2.3 pipeline参数 2.3.1 pipeline对象实例化参数 2.3.2 pipeline对象使用参数 2.4 pipeline实战 2.4.1 …...
Nginx 负载均衡详解
Nginx是一个高性能的HTTP和反向代理服务器,拥有丰富的功能和模块,负载均衡就是其中之一。负载均衡是一种技术,用于在多台服务器之间分配工作负载,以确保高可用性和可靠性。本文将详细介绍Nginx的负载均衡算法、工作原理、配置方法…...
Unity3D开发之传送带实现
/// <summary> /// 传送带 直线传送带 /// </summary> public class ConveyerBelt : MonoBehaviour {public float Speed 1;protected float mspeed;protected Vector3 direction;protected Rigidbody rd;List<GameObject> Goods new List<GameObject&…...

【学习笔记】无人机(UAV)在3GPP系统中的增强支持(二)-支持高分辨率视频直播应用
引言 本文是3GPP TR 22.829 V17.1.0技术报告,专注于无人机(UAV)在3GPP系统中的增强支持。文章提出了多个无人机应用场景,分析了相应的能力要求,并建议了新的服务级别要求和关键性能指标(KPIs)。…...
python的私有属性和数据封装
1.私有属性 在 Python 中,私有属性是一种编程约定,用于表示某些属性在类的内部使用,不希望被外部直接访问或修改。 私有属性的命名通常以双下划线 __ 开头。例如,在类中定义一个私有属性可以像这样: class MyClass:de…...
一文学会鉴别“套壳”ChatGPT模型
一文学会鉴别“套壳”ChatGPT模型 随着ChatGPT等明星模型的诞生,市场上也开始出现一些“套壳”现象,即部分模型表面标榜原创或先进,实则在核心算法上与知名模型高度相似。作为技术探索者,如何拨开迷雾,识别这些“李鬼…...

Docker基本管理1
Docker 概述 Docker是一个开源的应用容器引擎,基于go语言开发并遵循了apache2.0协议开源。 Docker是在Linux容器里运行应用的开源工具,是一种轻量级的“虚拟机”。 Docker 的容器技术可以在一台主机上轻松为任何应用创建一个轻量级的、可移植的、自给自…...

python-28-零基础自学python-json存数据、读数据,及程序合并
学习内容:《python编程:从入门到实践》第二版 知识点: import json引入、 try-except-else return def函数、打开文件、 练习内容: 练习10-11:喜欢的数 编写一个程序,提示用户输入喜欢的数ÿ…...

Excel第30享:基于辅助列的条件求和
1、需求描述 如下图所示,现要统计2022年YTD(Year To Date:年初至今日)各个人员的“上班工时(a2)”。 下图为系统直接导出的工时数据明细样例。 2、解决思路 Step1:确定逻辑。“从日期中提取出…...
Java查看RSA密钥的ASN1结构
背景:服务端使用Java开发的,接口需要客户端传一个RSA公钥,手机端使用Flutter开发的,然后就选择使用 pointycastle 生成密钥,很不巧,dart版本不像Java一样有个可以直接获取编码过的公钥信息的方法࿱…...

友思特方案 | 低延迟GigE Vision解决方案:用于红外设备、医疗和工业级探测面板
导读 维持实时视频系统软硬件的长期成本效益,是该系统在医疗、工业等领域广泛应用的前提。友思特低延迟GigE Vision解决方案创新性地突破了这一难题,提供高带宽且高可靠性的端到端网络链接,有效降低了开发成本、复杂性和时间。 引言 虽然实…...
网络安全策略:优先防护而非溯源的重要性
面对网络攻击,企业往往面临一个关键决策点:是立即投入资源进行攻击溯源,还是优先加强自身的防御体系。尽管溯源分析有助于了解攻击者的手段和动机,但在大多数情况下,优先强化防护是更为明智的选择。本文将探讨为何在遭…...
ES6 Iterator 与 for...of 循环(五)
Iterator 特性: 统一的接口:无论是数组、字符串还是自定义对象,只要它们有默认的迭代器,就可以使用 for…of 循环进行遍历。可迭代对象:具有 [Symbol.iterator] 属性的对象被认为是可迭代的。[Symbol.iterator] 是一个…...

typora删除多余图片
import os import re import shutil from bs4 import BeautifulSoupimport warningswarnings.filterwarnings(ignore) # 定义正则表达式用于匹配.md文件中的图片引用语句 pattern re.compile(r!\[.*]\((.*)\))# 获取所有.md文件中的图片引用路径 references set() md_filepat…...
【ceph】ceph-mon重新选举的情况
本站以分享各种运维经验和运维所需要的技能为主 《python零基础入门》:python零基础入门学习 《python运维脚本》: python运维脚本实践 《shell》:shell学习 《terraform》持续更新中:terraform_Aws学习零基础入门到最佳实战 《k8…...

PopClip(Mac 划词增强工具)值得购买吗?
PopClip 是一款 Mac 划词操作增强工具,可选装翻译搜索、格式转换等丰富扩展,联动多种软件执行创建提醒事项、添加到笔记等快捷操作,有效提升工作效率。 在 iPhone 或 iPad 内,选词后就会弹出气泡菜单,让你选择执行各种…...

Python | Leetcode Python题解之第227题基本计算器II
题目: 题解: class Solution:def calculate(self, s: str) -> int:n len(s)stack []preSign num 0for i in range(n):if s[i] ! and s[i].isdigit():num num * 10 ord(s[i]) - ord(0)if i n - 1 or s[i] in -*/:if preSign :stack.append(…...

redis源码分析之底层数据结构(一)-动态字符串sds
1.绪论 我们知道redis是由c语言实现的,c语言中是自带字符串的,但是为什么redis还要再实现自己的动态字符串呢,这种动态字符串的底层数据结构是怎样的呢?接下来我们带着这些问题来看一看redis中的动态字符串sds。 2.sds的组成 struct __at…...
路由协议的优先级,以及管理距离 AD 和 metric 的区别
路由协议的优先级(Preference,即管理距离 Administrative Distance )一般为一个 0 到 255 之间的数字,数字越大则优先级越低。表一是通常情况下各路由协议的优先级规定: 表一:一般路由协议优先级 路由协议…...

力扣 24两两交换链表中节点
画图 注意有虚拟头结点 注意判断时先判断cur->next ! nullptr,再判断cur->next->next ! nullptr 注意末尾返回dumyhead->next,用新建result指针来接并返回 class Solution { public:ListNode* swapPairs(ListNode* head) {ListNode *dummyhead new …...

eNSP-Cloud(实现本地电脑与eNSP内设备之间通信)
说明: 想象一下,你正在用eNSP搭建一个虚拟的网络世界,里面有虚拟的路由器、交换机、电脑(PC)等等。这些设备都在你的电脑里面“运行”,它们之间可以互相通信,就像一个封闭的小王国。 但是&#…...
vscode里如何用git
打开vs终端执行如下: 1 初始化 Git 仓库(如果尚未初始化) git init 2 添加文件到 Git 仓库 git add . 3 使用 git commit 命令来提交你的更改。确保在提交时加上一个有用的消息。 git commit -m "备注信息" 4 …...

stm32G473的flash模式是单bank还是双bank?
今天突然有人stm32G473的flash模式是单bank还是双bank?由于时间太久,我真忘记了。搜搜发现,还真有人和我一样。见下面的链接:https://shequ.stmicroelectronics.cn/forum.php?modviewthread&tid644563 根据STM32G4系列参考手…...
在鸿蒙HarmonyOS 5中实现抖音风格的点赞功能
下面我将详细介绍如何使用HarmonyOS SDK在HarmonyOS 5中实现类似抖音的点赞功能,包括动画效果、数据同步和交互优化。 1. 基础点赞功能实现 1.1 创建数据模型 // VideoModel.ets export class VideoModel {id: string "";title: string ""…...
Linux简单的操作
ls ls 查看当前目录 ll 查看详细内容 ls -a 查看所有的内容 ls --help 查看方法文档 pwd pwd 查看当前路径 cd cd 转路径 cd .. 转上一级路径 cd 名 转换路径 …...

页面渲染流程与性能优化
页面渲染流程与性能优化详解(完整版) 一、现代浏览器渲染流程(详细说明) 1. 构建DOM树 浏览器接收到HTML文档后,会逐步解析并构建DOM(Document Object Model)树。具体过程如下: (…...

C# 类和继承(抽象类)
抽象类 抽象类是指设计为被继承的类。抽象类只能被用作其他类的基类。 不能创建抽象类的实例。抽象类使用abstract修饰符声明。 抽象类可以包含抽象成员或普通的非抽象成员。抽象类的成员可以是抽象成员和普通带 实现的成员的任意组合。抽象类自己可以派生自另一个抽象类。例…...

【Java_EE】Spring MVC
目录 Spring Web MVC 编辑注解 RestController RequestMapping RequestParam RequestParam RequestBody PathVariable RequestPart 参数传递 注意事项 编辑参数重命名 RequestParam 编辑编辑传递集合 RequestParam 传递JSON数据 编辑RequestBody …...

【开发技术】.Net使用FFmpeg视频特定帧上绘制内容
目录 一、目的 二、解决方案 2.1 什么是FFmpeg 2.2 FFmpeg主要功能 2.3 使用Xabe.FFmpeg调用FFmpeg功能 2.4 使用 FFmpeg 的 drawbox 滤镜来绘制 ROI 三、总结 一、目的 当前市场上有很多目标检测智能识别的相关算法,当前调用一个医疗行业的AI识别算法后返回…...
AspectJ 在 Android 中的完整使用指南
一、环境配置(Gradle 7.0 适配) 1. 项目级 build.gradle // 注意:沪江插件已停更,推荐官方兼容方案 buildscript {dependencies {classpath org.aspectj:aspectjtools:1.9.9.1 // AspectJ 工具} } 2. 模块级 build.gradle plu…...