【密码学基础】基于LWE(Learning with Errors)的全同态加密方案
学习资源:
全同态加密I:理论与基础(上海交通大学 郁昱老师)
全同态加密II:全同态加密的理论与构造(Xiang Xie老师)
现在第二代(如BGV和BFV)和第三代全同态加密方案都是基于LWE构造的,现在先进的全同态方案也都是基于LWE的,所以本文总结一下LWE的基础知识。
首先考虑,我们希望加密一个数 s s s, 现在用一系列的 a i a_i ai对 s s s进行加密,得到 a i s a_is ais,实际上通过求解最大公约数GCD就能求解出 s s s。但是,如果加上一个随机噪声 e i e_i ei,得到 a i s + e i a_is+e_i ais+ei,那么将难以求解出 s s s的值。这个过程就是我对LWE的简单理解,所谓error就是一个noise。

全同态加密的计算过程分为三步:密钥生成KeyGen、加密Enc、同态计算Eval、解密Dec。、
KeyGen:

首先构造出如上的等式, s ⋅ A + e = s A + e s\cdot A + e = sA+e s⋅A+e=sA+e,然后得到公钥pk( − A -A −A和 s A + e sA+e sA+e的拼接),以及私钥sk( s s s和1的拼接)。于是得到pk和sk满足相乘后的结果是随机噪声e(接近0)。
Enc:
加密用的公钥pk,r是一个只包含0或1的随机向量,m是待加密的信息(放在向量的最低位上)。


Dec:
解密用的私钥sk,和ct计算完内积后求mod 2得到解密结果。

正确性证明:

sk和pk相乘得到2e(KeyGen时满足的条件),然后和r做内积得到一个很小的偶数噪声,最终的结果就是m+很小的偶数噪声,于是通过mod 2就能将噪声消除,得到解密结果m。这也就是为什么构造的噪声是2e,而不是e,我的理解就是希望通过构造偶数的随机噪声,从而在解密时方便用mod 2的方式消除掉噪声。
安全性证明:

当pk是伪随机的,r具有足够高的熵(也就是随机性很强?)时,pk和pk乘r都是伪随机的。自然和带m的向量相加后,加密结果也是伪随机的。

下面是Xiang Xie老师的公式化描述:
加密公式:密文c = 公钥pk ✖️ 随机r + 明文m
解密公式:明文m = <密文sk, 私钥sk> mod q mod 2

在这个基础上,再mod 2就能解密出明文m的值。只要噪声够小,就能保证正确性。
这里有个需要区分的事情:以上 P K = ( A , b = A s ′ + 2 e ) PK=(A, b=As'+2e) PK=(A,b=As′+2e)是BGV方案,BFV则是 P K = ( A , b = A s ′ + e ) PK=(A, b=As'+e) PK=(A,b=As′+e),区别是BGV将信息编码在低位,而BFV将消息编码在高位(学习BFV的时候会说明)。
Eval(加法同态和乘法同态):

注意到同态加法或乘法都会带来显著的噪声累积,并且乘法是呈平方增长趋势。
然后说说如何解密同态乘的结果,下面的式子可以看到:两个密文做乘法,等价于密文和私钥分别先做tensor product,然后再做内积。因此,显然密文和私钥的大小都翻了一倍。Example是一个等价性的证明。

那么问题来了,如何将同态乘之后的密文大小和私钥大小都恢复回去呢?这就是Key Switching解决的问题。
下面是Xiang Xie老师的描述:

Key Switching
目标是将密文和私钥的大小恢复到线性大小。

现在求密文c1和c2的乘法:


以上过程基于比特分解这个概念:

下面是Xiang Xie老师的描述:
Key Switching的目标:将私钥 s ~ \tilde s s~下的 c ~ \tilde c c~ 转换为 私钥 s s s下的 c c c,并且 c ~ \tilde c c~和 c c c都是加密的同一个明文。
这里有一个核心概念是Key Switching Key (KSK),也就是用私钥 s s s来加密 s ~ \tilde s s~。

通过Key Switching过程,可以推导出私钥从 s ⊗ s s\otimes s s⊗s变成了线性的 s s s,同时密文从 c ~ \tilde c c~变成了线性的 c c c。并且通过最后一行式子可以看出,Key Switching后的 ⟨ c , s ⟩ \langle c, s\rangle ⟨c,s⟩和原来的 ⟨ c ~ , s ⊗ s ⟩ \langle \tilde c, s\otimes s\rangle ⟨c~,s⊗s⟩之间相差了一个噪声 2 c ~ T e ~ 2\tilde c^T\tilde e 2c~Te~,这部分是可以非常大的!所以到这里仍然没办法实现Key Switching。
这里引入了一个Gadget矩阵G:

于是,Key Switching的过程变成了下面这样:

此时,增加的误差就非常小了。
总结一下就是,通过Key Switching,原来私钥 s ~ = s ⊗ s \tilde s=s \otimes s s~=s⊗s下的 c ~ = c ⊗ c \tilde c=c\otimes c c~=c⊗c,被转换成了私钥 s s s下的 c c c,注意Key Switching后的 s , c s, c s,c都不是原来的值了(double check)。

对于BGV,加法的噪声线性增长,乘法的噪声平方增长,Key Switching虽然可以支持乘法了(限制sk变得特别大),但是实际上噪声是在原本乘法噪声基础上加了一个很小的噪声,总体也非常大。因此需要进一步降低这个噪声。
Modulus Reduction

到这里,通过LWE实现了很小深度的同态乘法和加法计算,key switching则是对每层用新的密钥,但是随着计算深度加深,噪声的扩大是爆炸性的,因此还不是一个levelled FHE(能计算指定深度的FHE)。
现在我们希望不借助bootstrapping,实现一个能计算一定深度的FHE,需要用到模数变换。



暂时没太看懂中间的流程,简而言之就是将密文c从模q的域变换到模p的域上(p<<q),于是噪声等比例缩小,也就是大约缩小到原来的p/q倍。
下面是一个具体的例子:
如果不做Modulus Reduction,随着深度加深,噪声呈双指数趋势增长,level >= 3之后就会带来解密错误。

如果每个level上做Modulus Reduction,那么噪声也会被维持在一个绝对值范围内,代价就是模数会不断减小。

所以要想实现一个levelled FHE,可以设置一个模数 B d B^d Bd,然后就可以计算一个深度为 d d d的电路了(其中 B B B是刷新后密文的噪声上界)。计算完 d d d的深度后,模数应该是降低到 B B B,要保证此时解密不出错。BGV就是一种levelled FHE。

相关文章:
【密码学基础】基于LWE(Learning with Errors)的全同态加密方案
学习资源: 全同态加密I:理论与基础(上海交通大学 郁昱老师) 全同态加密II:全同态加密的理论与构造(Xiang Xie老师) 现在第二代(如BGV和BFV)和第三代全同态加密方案都是基…...
Linux - 基础开发工具(yum、vim、gcc、g++、make/Makefile、git)
目录 Linux软件包管理器 - yum Linux下安装软件的方式 认识yum 查找软件包 安装软件 如何实现本地机器和云服务器之间的文件互传 卸载软件 Linux编辑器 - vim vim的基本概念 vim下各模式的切换 vim命令模式各命令汇总 vim底行模式各命令汇总 vim的简单配置 Linux编译器 - gc…...
网络安全法律框架更新:最新合规要求与企业应对策略
网络安全法律框架的最新更新 近期,中国的网络安全法律框架经历了重要的更新。2022年,《网络安全法》迎来了首次修改,这一修订主要是为了与《数据安全法》和《个人信息保护法》等新实施的法律进行衔接协调,完善法律责任制度&#x…...
数仓工具—Hive语法之正则表达式函数
正则表达式函数 之前我们介绍过like rlike regexp 这些关键字,都是和匹配有关的,今天我们介绍一下hive 的REGEXP_REPLACE 和REGEXP_EXTRACT 函数,背景是使用Hive正则表达式函数提取数字 在我的其他文章中,我们已经看到了如何使用Hive正则表达式从字符串中提取日期值。正则…...
WKCTF 2024 easy_heap
很经典的house of orange unsortedbin attack FSOP 变量覆盖 不能 free,那首先想到就是 house of orange泄露Libc基址,然后unsortedbin attack。 但是只能show(8),就不能用largebin的套路来泄露堆地址了,那怎么办呢? …...
SQL 多变关联使用子查询去重
不去重状态 select a.*,b.recon_amt from free_settlement_first aleft join free_settlement_second b on a.settlement_first_id b.settlement_first_id 有2条数据出现了重复 使用子查询去重 select a.*,b.recon_amt from free_settlement_first aleft join free_settlem…...
php表单提交并自动发送邮件给某个邮箱(示例源码下载)
只需要将以下代码内容进行复制即可用到自己的程序/API接口中: <?php if(!empty($_POST[is_post]) && $_POST[is_post]1){$url "https://www.aoksend.com/index/api/send_email";$name $_POST[name];$email $_POST[email];$subject $_POS…...
论文翻译:Large Language Models for Education: A Survey
目录 大型语言模型在教育领域的应用:一项综述摘要1 引言2. 教育中的LLM特征2.1. LLMs的特征2.2 教育的特征2.2.1 教育发展过程 低进入门槛。2.2.2. 对教师的影响2.2.3 教育挑战 2.3 LLMEdu的特征2.3.1 "LLMs 教育"的具体体现2.3.2 "LLMs 教育"…...
7.13实训日志
上午 学习网络安全的过程中,我们深入了解了网络的不同层面和技术,从表层网络到深网再到暗网,以及涉及的产业分类和技术工具。这些知识不仅帮助我们理解网络的复杂性,还揭示了如何应对和防范各种网络威胁。 首先,我们…...
【力扣】每日一题—第70题,爬楼梯
题目: 假设你正在爬楼梯。需要n阶你才能到达楼顶。 每次你可以爬1或 2 个台阶。你有多少种不同的方法可以爬到楼顶呢? 思路: 我开始是写了一个函数计算爬一层和爬二层的个数,之后排列求和,但是超范围了,…...
Docker修改国内镜像源
如果docker已将安装好 参考:https://github.com/cmliu/CF-Workers-docker.io sudo mkdir -p /etc/dockercd /etc/dockersudo vim daemon.json #输入以下内容 { "registry-mirrors": ["https://docker.fxxk.dedyn.io"] } #重启docker服务 su…...
安防监控视频平台LntonCVS视频融合共享平台智慧消防实现远程集中视频监控方案
近年来,电力系统内变电站着火事件频发,这对消防安全管理提出了严峻挑战。我国消防安全基础设施不完善、管理机制不健全、应急处置能力不足及公众消防安全意识淡薄等问题,严重制约了消防安全的提升。因此,加强变电站的消防安全管理…...
【大模型LLM面试合集】大语言模型架构_layer_normalization
2.layer_normalization 1.Normalization 1.1 Batch Norm 为什么要进行BN呢? 在深度神经网络训练的过程中,通常以输入网络的每一个mini-batch进行训练,这样每个batch具有不同的分布,使模型训练起来特别困难。Internal Covariat…...
OpenGL笔记八之EBO和EBO绘制流程
OpenGL笔记八之EBO和EBO绘制流程 —— 2024-07-07 晚上 bilibili赵新政老师的教程看后笔记 code review! 文章目录 OpenGL笔记八之EBO和EBO绘制流程1.EBO2.glDrawElements:如果使用了ebo,最后一个参数可以写03.glDrawElements:如果使用了e…...
maven——(重要)手动创建,构建项目
创建项目 手动按照maven层级建好文件夹,并写上java,测试代码和pom文件 构建项目 在dos窗口中执行如下命令 compile编译 当前maven仓库中什么都没有。 在pom所在层级下,执行: mvn compile 就开始显示下面这些,…...
数学建模·非线性规划
整型规划 适用于一个变量或多个变量的值只能是整型的情况 整形规划的分类 0-1背包问题 对于一个物品来说,只有选和不选两种情况 表现为单下标,单变量问题 例:建设学校问题 对于每个学校来说只有选和不选两种情况,在数学上我们用…...
SpringCloud第三篇(服务中心与OpenFeign)
p 文章目录 一、服务中心二、Nacos注册中心 一、服务中心 在上一章我们实现了微服务拆分,并且通过Http请求实现了跨微服务的远程调用。不过这种手动发送Http请求的方式存在一些问题。 试想一下,假如商品微服务被调用较多,为了应对更高的并发…...
Linux重要知识点
1. 命令行操作 Linux大多数操作都是通过命令行进行的。熟悉常用命令和脚本是使用Linux的基础。 基本命令:如 ls, cd, cp, mv, rm,这些命令用于文件和目录的管理。文件权限和管理:了解如何使用 chmod, chown, chgrp 等命令来管理文件权限和所…...
Unity宏和编辑器
宏:UNITY_EDITOR 等等 编辑器:Unity未运行时的状态 如何使用:#if UNITY_EDITOR 代码 #endif 什么情况下使用:包裹那些想要在编辑器模式下使用的代码 而在Unity运行时不会去调用的代码 AssetDatabase.LoadAssetAtPath(路…...
计算机网络——网络层(概念及IP地址划分)
目录 网络层概念 网络层向上层提供的两种服务 虚电路 网络提供数据报服务 虚电路服务与数据报服务的对比 网络层的两个层面 分组传送到路由器的运作 对网络层进行分层 网际协议IP 虚拟互联网络 IP地址 IP地址及其表示方法 IP地址的计算方式 IP地址的结构 …...
基于数字孪生的水厂可视化平台建设:架构与实践
分享大纲: 1、数字孪生水厂可视化平台建设背景 2、数字孪生水厂可视化平台建设架构 3、数字孪生水厂可视化平台建设成效 近几年,数字孪生水厂的建设开展的如火如荼。作为提升水厂管理效率、优化资源的调度手段,基于数字孪生的水厂可视化平台的…...
MySQL用户和授权
开放MySQL白名单 可以通过iptables-save命令确认对应客户端ip是否可以访问MySQL服务: test: # iptables-save | grep 3306 -A mp_srv_whitelist -s 172.16.14.102/32 -p tcp -m tcp --dport 3306 -j ACCEPT -A mp_srv_whitelist -s 172.16.4.16/32 -p tcp -m tcp -…...
PAN/FPN
import torch import torch.nn as nn import torch.nn.functional as F import mathclass LowResQueryHighResKVAttention(nn.Module):"""方案 1: 低分辨率特征 (Query) 查询高分辨率特征 (Key, Value).输出分辨率与低分辨率输入相同。"""def __…...
JavaScript基础-API 和 Web API
在学习JavaScript的过程中,理解API(应用程序接口)和Web API的概念及其应用是非常重要的。这些工具极大地扩展了JavaScript的功能,使得开发者能够创建出功能丰富、交互性强的Web应用程序。本文将深入探讨JavaScript中的API与Web AP…...
【JavaSE】多线程基础学习笔记
多线程基础 -线程相关概念 程序(Program) 是为完成特定任务、用某种语言编写的一组指令的集合简单的说:就是我们写的代码 进程 进程是指运行中的程序,比如我们使用QQ,就启动了一个进程,操作系统就会为该进程分配内存…...
Xela矩阵三轴触觉传感器的工作原理解析与应用场景
Xela矩阵三轴触觉传感器通过先进技术模拟人类触觉感知,帮助设备实现精确的力测量与位移监测。其核心功能基于磁性三维力测量与空间位移测量,能够捕捉多维触觉信息。该传感器的设计不仅提升了触觉感知的精度,还为机器人、医疗设备和制造业的智…...
AxureRP-Pro-Beta-Setup_114413.exe (6.0.0.2887)
Name:3ddown Serial:FiCGEezgdGoYILo8U/2MFyCWj0jZoJc/sziRRj2/ENvtEq7w1RH97k5MWctqVHA 注册用户名:Axure 序列号:8t3Yk/zu4cX601/seX6wBZgYRVj/lkC2PICCdO4sFKCCLx8mcCnccoylVb40lP...
解析“道作为序位生成器”的核心原理
解析“道作为序位生成器”的核心原理 以下完整展开道函数的零点调控机制,重点解析"道作为序位生成器"的核心原理与实现框架: 一、道函数的零点调控机制 1. 道作为序位生成器 道在认知坐标系$(x_{\text{物}}, y_{\text{意}}, z_{\text{文}}…...
路由基础-路由表
本篇将会向读者介绍路由的基本概念。 前言 在一个典型的数据通信网络中,往往存在多个不同的IP网段,数据在不同的IP网段之间交互是需要借助三层设备的,这些设备具备路由能力,能够实现数据的跨网段转发。 路由是数据通信网络中最基…...
深入解析光敏传感技术:嵌入式仿真平台如何重塑电子工程教学
一、光敏传感技术的物理本质与系统级实现挑战 光敏电阻作为经典的光电传感器件,其工作原理根植于半导体材料的光电导效应。当入射光子能量超过材料带隙宽度时,价带电子受激发跃迁至导带,形成电子-空穴对,导致材料电导率显著提升。…...
