当前位置: 首页 > news >正文

行人越界检测 越线 越界区域 多边形IOU越界判断

行人越界判断
越界判断方式:(1)bbox中心点越界(或自定义)(2)交并比IoU判断
越界类型:(1)越线 (2)越界区域
1.越线判断
bbox中心点xc、yc判断是否越线

import cv2
def is_passing_line(point, polyline):  # 在直线上方,status =1   下方,status =-1 status = 1   poly_y = ((polyline[1][1] - polyline[0][1]) * (point[0] - polyline[0][0])) / (polyline[1][0] - polyline[0][0]) +  polyline[0][1] # 点映射在直线的高度if point[1] > poly_y:status = -1return statuspt = [xc,yc]
lines = [[x1,y1],[x2,y2]]
cv2.line(img,(x1,y1),(x2,y2),(255,0,0),2)
cv2.circle(img, pt, 4, (0,0,255), -1)	
status = is_passing_line(pt,lines)
cv2.imwrite('color_line.jpg',img)
print('status up 1 down -1:',status)

2.越界判断
bbox中心点xc、yc判断是否在多边形区域内

import cv2
import numpy as np
import matplotlib.path as mplPathpt=[1067,382] #bbox 中心点xc,yc
POLYGON = np.array([[870, 163],[1022, 180],[1060, 415],[954, 713],[727, 658],])
imgpath = 'demo.jpg'
img = cv2.imread(imgpath)
cv2.polylines(img, [POLYGON], True, (144, 238, 144), 2)
cv2.circle(img, pt, 4, (0,0,255), -1)
is_in = mplPath.Path(POLYGON).contains_point(pt)
cv2.imwrite('color.jpg',img)
print('is_in:',is_in) # True即在多边形区域内

3.矩形IoU越界判断
二者皆为矩形

def iou(box1, box2):                                           '''                                                        box: [ 0,  1,  2,  3]                                      box: [x1, y1, x2, y2],依次为左上右下坐标                  '''                                                        w = max(0, min(box1[2], box2[2]) - max(box1[0], box2[0]))  h = max(0, min(box1[3], box2[3]) - max(box1[1], box2[1]))  Inter = w * h                                              S_box1 = (box1[2]-box1[0]) * (box1[3]-box1[1])             S_box2 = (box2[2]-box2[0]) * (box2[3]-box2[1])             Union = S_box1 + S_box2 - Inter                            iou = Inter / Union                                        return iou                                                 
box1 = [100, 100, 200, 200]                                    
box2 = [100, 150, 200, 250]                                    
IoU = iou(box1, box2)                                          
print(IoU)

4.多边形IoU越界判断
支持任意多边形二者之间IoU计算

from shapely.geometry import Polygon                               poly1 = [(100, 100),(50,150), (100, 200), (200, 200), (200, 100)]   #逆时针顶点坐标
poly2 = [(100, 150), (100, 250), (200, 250), (200, 150)]           # 创建多边形                                                       
poly1 = Polygon(poly1)                                             
poly2 = Polygon(poly2)                                             # 计算交集和并集                                                   
intersection = poly1.intersection(poly2)                           
union = poly1.union(poly2)                                         # 计算IoU                                                          
iou = intersection.area / union.area                               
print(f"IoU: {iou}") 

相关文章:

行人越界检测 越线 越界区域 多边形IOU越界判断

行人越界判断 越界判断方式:(1)bbox中心点越界(或自定义)(2)交并比IoU判断 越界类型:(1)越线 (2)越界区域 1.越线判断 bbox中心点xc、…...

「UCD」浅谈蓝湖Figma交互设计对齐

在现代数字产品的设计和开发过程中,选择合适的工具对于提高团队效率和保证产品质量至关重要。本文将从开发和设计两个不同的角度,探讨蓝湖和Figma两款流行工具的优势与不足,并提出结论和建议。 开发研发视角:蓝湖 优点: 清晰的设计规范:蓝湖为开发工程师提供了清晰的设计…...

VUE3 播放RTSP实时、回放(NVR录像机)视频流(使用WebRTC)

1、下载webrtc-streamer,下载的最新window版本 Releases mpromonet/webrtc-streamer GitHub 2、解压下载包 3、webrtc-streamer.exe启动服务 (注意:这里可以通过当前文件夹下用cmd命令webrtc-streamer.exe -o这样占用cpu会很少&#xff0c…...

[PaddlePaddle飞桨] PaddleOCR-光学字符识别-小模型部署

PaddleOCR的GitHub项目地址 推荐环境: PaddlePaddle > 2.1.2 Python > 3.7 CUDA > 10.1 CUDNN > 7.6pip下载指令: python -m pip install paddlepaddle-gpu2.5.1 -i https://pypi.tuna.tsinghua.edu.cn/simple pip install paddleocr2.7…...

Python应用开发——30天学习Streamlit Python包进行APP的构建(15):优化性能并为应用程序添加状态

Caching and state 优化性能并为应用程序添加状态! Caching 缓存 Streamlit 为数据和全局资源提供了强大的缓存原语。即使从网络加载数据、处理大型数据集或执行昂贵的计算,它们也能让您的应用程序保持高性能。 本页仅包含有关 st.cache_data API 的信息。如需深入了解缓…...

python实现openssl的EVP_BytesToKey及AES_256_CBC加解密算法

python实现openssl EVP_BytesToKey(EVP_aes_256_cbc(), EVP_md5(), NULL, pass, passlen, 1, key, iv); 并实现AES 256 CBC加解密. # encoding:utf-8import base64 from Crypto.Cipher import AES from Crypto import Random from hashlib import md5def EVP_BytesToKey(passw…...

基于SpringBoot+VueJS+微信小程序技术的图书森林共享小程序设计与实现

注:每个学校每个老师对论文的格式要求不一样,故本论文只供参考,本论文页数达到60页以上,字数在6000及以上。 基于SpringBootVueJS微信小程序技术的图书森林共享小程序设计与实现 目录 基于SpringBootVueJS微信小程序技术的图书森…...

【css】image 使用 transform:scale 放大后显示不全的问题

css 可以用 transform: scale(1.2) 实现图片放大 1.2 倍显示的功能,在此基础上可以修改 transform-origin 为用户点击的坐标值优化体验。问题在于 origin 位于图片下方时,图片放大后出现滚动条,而滚动条的高度会忽略放大显示的图片的上半部分…...

损失函数简介

损失函数(Loss Function)是机器学习中用来衡量模型预测值与真实值之间差异的函数。在训练过程中,通过最小化损失函数来优化模型的参数,以提高模型的预测准确性。 以下是损失函数的主要用途和一些常用的损失函数类型: 损失函数的用途: 评估模型性能:损失函数提供了一个…...

2023睿抗CAIP-编程技能赛-本科组省赛(c++)

RC-u1 亚运奖牌榜 模拟 AC: #include<iostream> using namespace std; struct nation{int j,y,t; }a[2]; int main(){int n;cin>>n;for(int i1;i<n;i){int x,y;cin>>x>>y;if(y1) a[x].j;if(y2) a[x].y;if(y3) a[x].t;}cout<<a[0].j<<&…...

现在国内的ddos攻击趋势怎么样?想了解现在ddos的情况该去哪看?

目前&#xff0c;国内的DDoS攻击趋势显示出以下几个特征&#xff1a; 攻击频次显著增加&#xff1a;根据《快快网络2024年DDoS攻击趋势白皮书》&#xff0c;2023年DDoS攻击活动有显著攀升&#xff0c;总攻击次数达到1246.61万次&#xff0c;比前一年增长了18.1%。 攻击强度和规…...

微服务到底是个什么东东?

微服务架构是一种架构模式&#xff0c;它提倡将单一应用程序划分成一组小的服务&#xff0c;服务之间互相协调、互相配合&#xff0c;为用户提供最终价值。 每个服务运行在其独立的进程中&#xff0c;服务和服务间采用轻量级的通信机制互相沟通&#xff08;通常是基于 HTTP 的…...

C++笔试强训5

文章目录 一、选择题1-5题6-10题 二、编程题题目一题目二 一、选择题 1-5题 x1&#xff0c;先x&#xff0c;再x–&#xff0c;while判断永远为真&#xff0c;故死循环 选D。 sizeof会计算\0,strlen不包括\0,并且strlen只计算\0之前的。 所以sizeof是10&#xff0c;strken是4 …...

初学51单片机之UART串口通信

CSDN其他博主的博文&#xff08;自用&#xff09;嵌入式学习笔记9-51单片机UART串口通信_51uart串口通讯-CSDN博客 CSDN其他博主的博文写的蛮好&#xff0c;如果你想了解51单片机UART串口可以点进去看看&#xff1a; UART全称Universal Asynchronous Receiver/Transmitter即通…...

数据结构——查找(线性表的查找与树表的查找)

目录 1.查找 1.查找的基本概念 1.在哪里找&#xff1f; 2.什么查找&#xff1f; 3.查找成功与否&#xff1f; 4.查找的目的是什么&#xff1f; 5.查找表怎么分类&#xff1f; 6.如何评价查找算法&#xff1f; 7.查找的过程中我们要研究什么&#xff1f; 2.线性表…...

MySQL入门学习-深入索引.组合索引

在 MySQL 中&#xff0c;组合索引&#xff08;也称为复合索引&#xff09;是在多个列上创建的索引。以下是关于组合索引的详细信息&#xff1a; 一、组合索引的概念&#xff1a; - 组合索引是基于多个列创建的索引结构。它可以提高在这些列上进行查询的效率。 二、深入理解组…...

RABBITMQ的本地测试证书生成脚本

由于小程序要求必须访问wss的接口&#xff0c;因此需要将测试环境也切换到https&#xff0c;看了下官方的文档 RabbitMQ Web STOMP Plugin | RabbitMQ里面有这个信息 然后敲打GPT一阵子&#xff0c;把要求输入几个来回&#xff0c;得到这样一个脚本&#xff1a; generate_cer…...

记录些Redis题集(4)

Redis 通讯协议(RESP) Redis 通讯协议&#xff08;Redis Serialization Protocol&#xff0c;RESP&#xff09;是 Redis 服务端与客户端之间进行通信的协议。它是一种二进制安全的文本协议&#xff0c;设计简洁且易于实现。RESP 主要用于支持客户端和服务器之间的请求响应交互…...

JVM:垃圾回收器

文章目录 一、介绍二、年轻代-Serial垃圾回收器三、老年代-SerialOld垃圾回收器四、年轻代-ParNew垃圾回收器五、老年代-CMS&#xff08;Concurrent Mark Sweep&#xff09;垃圾回收器六、年轻代-Parllel Scavenge垃圾回收器七、Parallel Old垃圾回收器八、G1垃圾回收器 一、介…...

Golang | Leetcode Golang题解之第228题汇总区间

题目&#xff1a; 题解&#xff1a; func summaryRanges(nums []int) (ans []string) {for i, n : 0, len(nums); i < n; {left : ifor i; i < n && nums[i-1]1 nums[i]; i {}s : strconv.Itoa(nums[left])if left < i-1 {s "->" strconv.It…...

MPNet:旋转机械轻量化故障诊断模型详解python代码复现

目录 一、问题背景与挑战 二、MPNet核心架构 2.1 多分支特征融合模块(MBFM) 2.2 残差注意力金字塔模块(RAPM) 2.2.1 空间金字塔注意力(SPA) 2.2.2 金字塔残差块(PRBlock) 2.3 分类器设计 三、关键技术突破 3.1 多尺度特征融合 3.2 轻量化设计策略 3.3 抗噪声…...

反向工程与模型迁移:打造未来商品详情API的可持续创新体系

在电商行业蓬勃发展的当下&#xff0c;商品详情API作为连接电商平台与开发者、商家及用户的关键纽带&#xff0c;其重要性日益凸显。传统商品详情API主要聚焦于商品基本信息&#xff08;如名称、价格、库存等&#xff09;的获取与展示&#xff0c;已难以满足市场对个性化、智能…...

盘古信息PCB行业解决方案:以全域场景重构,激活智造新未来

一、破局&#xff1a;PCB行业的时代之问 在数字经济蓬勃发展的浪潮中&#xff0c;PCB&#xff08;印制电路板&#xff09;作为 “电子产品之母”&#xff0c;其重要性愈发凸显。随着 5G、人工智能等新兴技术的加速渗透&#xff0c;PCB行业面临着前所未有的挑战与机遇。产品迭代…...

基于Uniapp开发HarmonyOS 5.0旅游应用技术实践

一、技术选型背景 1.跨平台优势 Uniapp采用Vue.js框架&#xff0c;支持"一次开发&#xff0c;多端部署"&#xff0c;可同步生成HarmonyOS、iOS、Android等多平台应用。 2.鸿蒙特性融合 HarmonyOS 5.0的分布式能力与原子化服务&#xff0c;为旅游应用带来&#xf…...

【SQL学习笔记1】增删改查+多表连接全解析(内附SQL免费在线练习工具)

可以使用Sqliteviz这个网站免费编写sql语句&#xff0c;它能够让用户直接在浏览器内练习SQL的语法&#xff0c;不需要安装任何软件。 链接如下&#xff1a; sqliteviz 注意&#xff1a; 在转写SQL语法时&#xff0c;关键字之间有一个特定的顺序&#xff0c;这个顺序会影响到…...

聊一聊接口测试的意义有哪些?

目录 一、隔离性 & 早期测试 二、保障系统集成质量 三、验证业务逻辑的核心层 四、提升测试效率与覆盖度 五、系统稳定性的守护者 六、驱动团队协作与契约管理 七、性能与扩展性的前置评估 八、持续交付的核心支撑 接口测试的意义可以从四个维度展开&#xff0c;首…...

Map相关知识

数据结构 二叉树 二叉树&#xff0c;顾名思义&#xff0c;每个节点最多有两个“叉”&#xff0c;也就是两个子节点&#xff0c;分别是左子 节点和右子节点。不过&#xff0c;二叉树并不要求每个节点都有两个子节点&#xff0c;有的节点只 有左子节点&#xff0c;有的节点只有…...

使用Matplotlib创建炫酷的3D散点图:数据可视化的新维度

文章目录 基础实现代码代码解析进阶技巧1. 自定义点的大小和颜色2. 添加图例和样式美化3. 真实数据应用示例实用技巧与注意事项完整示例(带样式)应用场景在数据科学和可视化领域,三维图形能为我们提供更丰富的数据洞察。本文将手把手教你如何使用Python的Matplotlib库创建引…...

技术栈RabbitMq的介绍和使用

目录 1. 什么是消息队列&#xff1f;2. 消息队列的优点3. RabbitMQ 消息队列概述4. RabbitMQ 安装5. Exchange 四种类型5.1 direct 精准匹配5.2 fanout 广播5.3 topic 正则匹配 6. RabbitMQ 队列模式6.1 简单队列模式6.2 工作队列模式6.3 发布/订阅模式6.4 路由模式6.5 主题模式…...

push [特殊字符] present

push &#x1f19a; present 前言present和dismiss特点代码演示 push和pop特点代码演示 前言 在 iOS 开发中&#xff0c;push 和 present 是两种不同的视图控制器切换方式&#xff0c;它们有着显著的区别。 present和dismiss 特点 在当前控制器上方新建视图层级需要手动调用…...