当前位置: 首页 > news >正文

论文分享|AAAI2024‘北航|用大语言模型缩小有监督和无监督句子表示学习的差距

先说结论,大语言模型除了作为聊天的Agent,也可以为检索模型生成优质的文本对训练数据,从而做到无监督场景下也能够适用。这里分享一篇AAAI2024的工作,重点探讨如何生成比评估集更困难的训练数据来提升无监督句子表示学习质量,应该对很多表示学习工作都有一定启发

论文题目:Narrowing the Gap between Supervised and Unsupervised Sentence Representation Learning with Large Language Model

来源:AAAI2024/实验室师兄/北航

方向:文本表示学习

开源地址:https://github.com/BDBC-KG-NLP/NGCSE

摘要

句子表示学习(SRL)是自然语言处理(NLP)中的一项基本任务,句子编码对比学习(CSE)因其优越的性能而成为主流技术。CSE中一个有趣的现象是有监督方法和无监督方法之间的显著性能差异,它们唯一的区别在于训练数据。以前的工作将这种性能差距归因于对齐和均匀性的差异。然而,由于对齐和均匀性只衡量结果,他们没有回答“训练数据的什么方面导致了性能差距?”以及“如何才能缩小性能差距?”。

本文进行了实验来回答这两个问题。首先通过彻底比较监督和无监督CSE在各自训练过程中的行为来回答“什么”的问题。从比较中,我们确定了相似度模式是性能差距的关键因素,并引入了一个度量,称为相对拟合难度Relative Fitting Difficulty(RFD),来衡量相似度模式的复杂性

然后,基于从“什么”问题中获得的见解,我们通过增加训练数据的模式复杂性来解决“如何”问题。我们通过利用大语言模型(LLM)的上下文学习(ICL)能力来生成模拟复杂模式的数据来实现这一点。通过利用LLM生成数据中的有层次的模式,本文有效地缩小了有监督和无监督CSE之间的差距。

介绍

“什么”导致了性能差距

相似度模式:一个数据集怎样定义相似和不相似的文本对。训练数据集的相似度模式越复杂,训练效果越好。训练集的相似度模式可以用训练集与评估集间的对齐和均匀性的相对大小来衡量。用这种方式,可以发现有监督训练集(NLI)中的相似度模式要比评估集更复杂,无监督训练集(Wiki)中的相似度模式要比评估集简单。下图说明了这一结论,在对齐和均匀性两个指标上,有监督训练集都要高于评估集,而无监督训练集都要更低。

img

由此本文提出了相对匹配难度Relative Fitting Difficulty (RFD)来评估相似度模式的复杂性,即计算对比学习训练过程中,Bert每个时间步在训练集和评估集的表征的对齐和均匀性的差值,再取平均

img

img

实验表明RFD较大的数据确实能获得更好的效果,下图中右上角的五角星代表本文的训练方法的结果,可以看到相比左下方的之前的无监督训练方式都有明显提升,同时RFD也基本都更大

img

如何才能缩小性能差距?

接着本文通过LLM的上下文学习,提示LLM模拟了NLI数据(即两个句子是违背还是不违背)和STSSTS数据(将两个句子的相似度分为positive,intermediate,negative,其中中间等级是让语言模型生成比positive细节少一些的句子)

img

为了有效利用STS生成数据中的层次化结构关系,本文还提出了一种层次化结构的三元损失Hierarchical Triplet (HT) loss

img

并将这个损失和对比损失结合作为训练目标

img

STS实验结果表明确实缩小了有监督和无监督训练的差异,在STS16上完成了反超,不过大部分还是不能达到有监督的水平

img

img

分类任务上将差距缩小到一个点以内,部分结果基本相当

img


大家好,我是NLP研究者BrownSearch,如果你觉得本文对你有帮助的话,不妨点赞收藏支持我的创作,您的正反馈是我持续更新的动力!如果想了解更多LLM/检索的知识,记得关注我!

相关文章:

论文分享|AAAI2024‘北航|用大语言模型缩小有监督和无监督句子表示学习的差距

先说结论,大语言模型除了作为聊天的Agent,也可以为检索模型生成优质的文本对训练数据,从而做到无监督场景下也能够适用。这里分享一篇AAAI2024的工作,重点探讨如何生成比评估集更困难的训练数据来提升无监督句子表示学习质量&…...

vue3相比于vue2有哪些新特性?

Composition API: 组合式 API 提供了更灵活和可组合的方式来组织代码。它允许将逻辑功能集中在一起,而不是分散在生命周期钩子中。 import { ref, reactive, computed, watch } from vue;export default {setup() {const count ref(0);const state r…...

Gooxi受邀参加第三届中国数据中心服务器与设备峰会

7月2-3日,第三届中国数据中心服务器与设备峰会在上海召开,作为国内最聚焦在服务器领域的专业峰会,吸引了来自全国的行业专家、服务器与机房设备厂家,企业IT用户,数据中心业主共同探讨AIGC时代下智算中心设备的设计之道…...

3个实现前端节流的方法,附代码。

一、什么是前端节流 前端节流(Throttling)是一种优化前端性能的技术,它可以限制某些函数的执行频率,以提高性能和用户体验。节流可以用于控制一些高频事件的触发频率,比如滚动事件、鼠标移动事件、窗口大小改变事件等…...

uniapp 微信小程序根据后端返回的文件链接打开并保存到手机文件夹中【支持doc、docx、txt、xlsx等类型的文件】

项目场景: 我们在使用uniapp官方提供的uni.downloadFile以及uni.saveFile时,会发现这个文件下载的默认保存位置和我们预想的不太一样,容易找不到,而且没有提示,那么我们就需要把文件打开自己保存并且有提示保存到哪个…...

一群追星星的人,对AI的盼与怕

面对AI,有人害怕,有人期盼。 “AI和画画的、开网约车的、写东西的人有仇吗?”近来成了很多从业者的心声。大模型技术驱动了AI的能力进化过临界点,我们普通人根本就跟不上,或快或慢被淘汰。看起来,AI正在给人…...

同步IO、异步IO以及五种网络IO模式

目录 一、同步IO和异步IO 二、五种网络IO模式 1、阻塞IO 2、非阻塞IO 3、IO多路复用 3.1、SELECT 3.2、POLL 3.3、EPOLL 一、同步IO和异步IO 场景1: 小明去打开水,而开水塔此时没有水,小明在现场一直等待开水到来,或者不断…...

IP-Guard日志数据上传至 SYSLOG 服务器操作指南

一、功能简介 服务器支持把日志数据上传到 SYSLOG 服务器。 二、功能配置 2.1 数据目录移交设置 在服务器安装目录下 OServer3.ini 文件中,添加工具启动配置,配置五分钟内生效。 Path:设置移交目录路径,IPG 服务器会把收集完成的…...

线程安全(二)synchronized 的底层实现原理、锁升级、对象的内存结构

目录 一、基础使用1.1 不加锁的代码实现1.2 加锁的代码实现二、实现原理2.1 synchronized 简介2.2 对象监控器(Monitor)2.3 加锁过程第一步:判断 Owner 指向第二步:进入 EntryList 阻塞第三步:主动进入 WaitSet 等待三、锁升级3.1 对象的内存结构3.2 Mark Word 对象头3.3 …...

【学习笔记】无人机(UAV)在3GPP系统中的增强支持(十四)-无人机操控关键绩效指标(KPI)框架

引言 本文是3GPP TR 22.829 V17.1.0技术报告,专注于无人机(UAV)在3GPP系统中的增强支持。文章提出了多个无人机应用场景,分析了相应的能力要求,并建议了新的服务级别要求和关键性能指标(KPIs)。…...

数电基础 - 半导体存储

目录 一. 简介 一. 只读存储器 二. 可编程只读存储器 三. 可擦除的可编程只读存储器 四. 随机存储器 五. 存储器容量的扩展 六. 总结 一. 简介 半导体存储是数字电路中用于存储数据的重要组成部分。 半导体存储器主要分为两大类:随机存取存储器&#xff0…...

校园工会体育报名小程序的设计

管理员账户功能包括:系统首页,个人中心,赛事公告管理,球员管理,球队信息管理,比赛信息,比赛报名管理 微信端账号功能包括:系统首页,比赛信息,比赛报名&#…...

2024Datawhale AI夏令营---基于术语词典干预的机器翻译挑战赛--学习笔记

#Datawhale #NLP 1.背景介绍: 机器翻译(Machine Translation,简称MT)是自然语言处理领域的一个重要分支,其目标是将一种语言的文本自动转换为另一种语言的文本。机器翻译的发展可以追溯到20世纪50年代,经历…...

手机下载APP (uniapp/vue)

一、uniapp <template><view class"content"><view class"appName">{{ formData.appName }}</view><view class"appInfo">{{ formData.appInfo }}</view><image class"logo" :src"formDa…...

python数据可视化(5)——绘制饼图

课程学习来源&#xff1a;b站up&#xff1a;【蚂蚁学python】 【课程链接&#xff1a;【【数据可视化】Python数据图表可视化入门到实战】】 【课程资料链接&#xff1a;【链接】】 Python绘制饼图分析北京天气 饼图&#xff0c;是一个划分为几个扇形的圆形统计图表&#xff…...

实习随笔【iviews的Select实现‘与全部互斥’的多选】

在实习中&#xff0c;遇到了如下需求&#xff0c;要求如下&#xff1a; 上面提到了一个需求为&#xff0c;选择全部与选择一个或者多个互斥&#xff0c;我们来看一下如何解决 核心代码 监听value的变化&#xff0c;如果含有‘全部’&#xff0c;且数组长度>1&#xff0c;则删…...

网站架构核心要素

高性能 技术指标&#xff1a;响应时间、吞吐量、并发数 前端优化手段 页面布局&#xff1a;css在前&#xff0c;js在后通信数据量&#xff1a;数据尽量精简缓存&#xff1a;浏览器缓存、cdn异步&#xff1a;ajax 后端优化手段 缓存&#xff1a;反向代理、redis异步&#x…...

XML 解析异常问题解决

问题描述 The parser has encountered more than "64000" entity expansions in this document; this is the limit imposed by the JDK. 在运行 Java 应用程序时&#xff0c;出现了 XML 解析异常。具体表现为&#xff1a; 报错信息显示无法创建 StAX&#xff08;S…...

C# 匿名方法、Lambda、Linq概念及联系

匿名方法、Lambda表达式与LINQ 匿名方法 概念&#xff1a; 匿名方法是没有名称的方法实现&#xff0c;通常与委托关联使用。它提供了一种在不创建独立命名方法的情况下编写代码块的方式。 语法&#xff1a; delegate void MyDelegate(string message);MyDelegate del dele…...

django ninja get not allowed 能用 put delete

遇到一个奇怪的问题&#xff0c;django-ninja 编写的 get post 方法不能使用 # 获取Material router.get(/material, responseList[MaterialSchemaOut]) paginate(MyPagination) def list_material(request, filters: Filters Query(...)):qs retrieve(request, Material, f…...

微信小程序之bind和catch

这两个呢&#xff0c;都是绑定事件用的&#xff0c;具体使用有些小区别。 官方文档&#xff1a; 事件冒泡处理不同 bind&#xff1a;绑定的事件会向上冒泡&#xff0c;即触发当前组件的事件后&#xff0c;还会继续触发父组件的相同事件。例如&#xff0c;有一个子视图绑定了b…...

ES6从入门到精通:前言

ES6简介 ES6&#xff08;ECMAScript 2015&#xff09;是JavaScript语言的重大更新&#xff0c;引入了许多新特性&#xff0c;包括语法糖、新数据类型、模块化支持等&#xff0c;显著提升了开发效率和代码可维护性。 核心知识点概览 变量声明 let 和 const 取代 var&#xf…...

循环冗余码校验CRC码 算法步骤+详细实例计算

通信过程&#xff1a;&#xff08;白话解释&#xff09; 我们将原始待发送的消息称为 M M M&#xff0c;依据发送接收消息双方约定的生成多项式 G ( x ) G(x) G(x)&#xff08;意思就是 G &#xff08; x ) G&#xff08;x) G&#xff08;x) 是已知的&#xff09;&#xff0…...

《用户共鸣指数(E)驱动品牌大模型种草:如何抢占大模型搜索结果情感高地》

在注意力分散、内容高度同质化的时代&#xff0c;情感连接已成为品牌破圈的关键通道。我们在服务大量品牌客户的过程中发现&#xff0c;消费者对内容的“有感”程度&#xff0c;正日益成为影响品牌传播效率与转化率的核心变量。在生成式AI驱动的内容生成与推荐环境中&#xff0…...

学习STC51单片机31(芯片为STC89C52RCRC)OLED显示屏1

每日一言 生活的美好&#xff0c;总是藏在那些你咬牙坚持的日子里。 硬件&#xff1a;OLED 以后要用到OLED的时候找到这个文件 OLED的设备地址 SSD1306"SSD" 是品牌缩写&#xff0c;"1306" 是产品编号。 驱动 OLED 屏幕的 IIC 总线数据传输格式 示意图 …...

Spring AI 入门:Java 开发者的生成式 AI 实践之路

一、Spring AI 简介 在人工智能技术快速迭代的今天&#xff0c;Spring AI 作为 Spring 生态系统的新生力量&#xff0c;正在成为 Java 开发者拥抱生成式 AI 的最佳选择。该框架通过模块化设计实现了与主流 AI 服务&#xff08;如 OpenAI、Anthropic&#xff09;的无缝对接&…...

精益数据分析(97/126):邮件营销与用户参与度的关键指标优化指南

精益数据分析&#xff08;97/126&#xff09;&#xff1a;邮件营销与用户参与度的关键指标优化指南 在数字化营销时代&#xff0c;邮件列表效度、用户参与度和网站性能等指标往往决定着创业公司的增长成败。今天&#xff0c;我们将深入解析邮件打开率、网站可用性、页面参与时…...

JAVA后端开发——多租户

数据隔离是多租户系统中的核心概念&#xff0c;确保一个租户&#xff08;在这个系统中可能是一个公司或一个独立的客户&#xff09;的数据对其他租户是不可见的。在 RuoYi 框架&#xff08;您当前项目所使用的基础框架&#xff09;中&#xff0c;这通常是通过在数据表中增加一个…...

JS设计模式(4):观察者模式

JS设计模式(4):观察者模式 一、引入 在开发中&#xff0c;我们经常会遇到这样的场景&#xff1a;一个对象的状态变化需要自动通知其他对象&#xff0c;比如&#xff1a; 电商平台中&#xff0c;商品库存变化时需要通知所有订阅该商品的用户&#xff1b;新闻网站中&#xff0…...

MySQL 知识小结(一)

一、my.cnf配置详解 我们知道安装MySQL有两种方式来安装咱们的MySQL数据库&#xff0c;分别是二进制安装编译数据库或者使用三方yum来进行安装,第三方yum的安装相对于二进制压缩包的安装更快捷&#xff0c;但是文件存放起来数据比较冗余&#xff0c;用二进制能够更好管理咱们M…...