【多模态学习笔记二】MINIGPT-4论文阅读
MINIGPT-4:ENHANCING VISION-LANGUAGE UNDERSTANDING WITH ADVANCED LARGE LANGUAGE MODELS
提出的MiniGPT-4使用一个投影层,将冻结的视觉编码器与冻结的先进的LLM Vicuna对齐。我们的工作首次揭示,将视觉特征与先进的大型语言模型正确对齐可以具有GPT-4所展示的许多先进的多模态能力,例如从手绘草稿生成详细的图像描述和创建网站。在我们的实验中,我们发现,在短图像字幕对上训练的模型会产生不自然的语言输出(例如重复和片段化)。为了解决这个问题,我们在第二阶段使用了一个详细的图像描述数据集来微调模型,从而提高了模型的生成可靠性和整体可用性。

MiniGPT-4添加了一个 single projection layer,将编码的视觉特征与Vicuna语言模型对齐,并冻结所有其他视觉和语言组件。MiniGPT-4最初在4个A100 GPU上使用256的批量大小训练20k步,利用组合图像字幕数据集,其中包括来自LAION、概念字幕和SBU的图像,将视觉特征与Vicuna语言模型对齐。然而,仅仅将视觉特征与语言模型(LLM)对齐不足以确保强大的视觉对话能力,就像聊天机器人一样。原始图像文本对中潜在噪声的存在可能会导致语言输出低于标准。因此,我们收集了另外3500个详细的图像描述对,用设计的对话模板进一步微调模型,以提高生成语言的自然度和可用性。
相关文章:
【多模态学习笔记二】MINIGPT-4论文阅读
MINIGPT-4:ENHANCING VISION-LANGUAGE UNDERSTANDING WITH ADVANCED LARGE LANGUAGE MODELS 提出的MiniGPT-4使用一个投影层,将冻结的视觉编码器与冻结的先进的LLM Vicuna对齐。我们的工作首次揭示,将视觉特征与先进的大型语言模型正确对齐可以具有GPT-4所展示的许多先进的多…...
Docker基本讲解及演示
Docker安装教程 Docker安装教程 1、Docker介绍 Docker是一个开源的应用容器引擎,允许开发者将应用程序及其依赖项打包成一个轻量级、可移植的容器,然后发布到任何支持 Docker 的环境中运行,无论是开发机、测试机还是生产环境。 Docker基于…...
各类专业技术的pdf电子书
从业多年,收集了海量的pdf电子书籍,感兴趣的私聊。...
【Linux】多线程_9
文章目录 九、多线程10. 线程池 未完待续 九、多线程 10. 线程池 这里我没实现一些 懒汉单例模式 的线程池,并且包含 日志打印 的线程池: Makefile: threadpool:Main.ccg -o $ $^ -stdc11 -lpthread .PHONY:clean clean:rm -f threadpoolT…...
LabVIEW设备检修信息管理系统
开发了基于LabVIEW设计平台开发的设备检修信息管理系统。该系统应用于各种设备的检修基地,通过与基地管理信息系统的连接和数据交换,实现了本地检修工位数据的远程自动化管理,提高了设备的检修效率和安全性。 项目背景 现代设备运维过程中信…...
python爬虫基础:使用lxml库进行HTML解析和数据提取的实践指南
使用lxml库进行HTML解析和数据提取的实践指南 在Python编程中,网页抓取和数据提取是一项常见任务。lxml库因其高效性和强大的XPath支持,成为了处理HTML和XML文档的优选工具。本文将带你了解如何使用lxml来解析HTML文档并提取所需数据。 1. 安装lxml库 …...
大语言模型系列:Transformer
在自然语言处理(NLP)领域,Transformer模型自2017年由Vaswani等人在论文《Attention Is All You Need》中提出以来,已成为最具影响力的技术之一。这种模型设计的核心是自注意力机制,它允许模型在处理序列数据时…...
宠物健康新守护:智能听诊器引领科技突破
在宠物护理领域,一项令人瞩目的科技创新正逐渐兴起,那便是智能听诊器。这款革命性的设备以前所未有的准确性和便利性,为宠物主人提供了一种全新的健康监测体验。 只需将智能听诊器轻轻放置在爱宠的身上,它便立即开始工作…...
KITTI 3D 数据可视化
引言 KITTI 视觉基准测试套件(KITTI Vision Benchmark Suite)提供了大量用于理解自动驾驶场景的工具。尤其是3D数据可视化在分析和解释传感器(如激光雷达)与环境的复杂交互中起到了至关重要的作用。本文将详细探讨KITTI数据集中3…...
旅游数据可视化:免费工具让复杂数据变得简单易懂
随着旅游业的蓬勃发展,海量的数据如同繁星点点,记录着每一位旅者的足迹与偏好。然而,如何将这些复杂的数据转化为直观、易懂的信息,为旅游企业精准决策、为消费者提供更加个性化的服务,成为了行业内外共同关注的焦点。…...
数据结构进阶:使用链表实现栈和队列详解与示例(C, C#, C++)
文章目录 1、 栈与队列简介栈(Stack)队列(Queue) 2、使用链表实现栈C语言实现C#语言实现C语言实现 3、使用链表实现队列C语言实现C#语言实现C语言实现 4、链表实现栈和队列的性能分析时间复杂度空间复杂度性能特点与其他实现的比较…...
【线程系列之五】线程池介绍C语言
一、基本概念 1.1 概念 线程池(Thread Pool)是一种基于池化技术管理线程的机制,旨在减少线程创建和销毁的开销,提高系统资源的利用率,以及更好地控制系统中同时运行的线程数量。线程池通过预先创建一定数量的线程&am…...
【学习css3】使用flex和grid实现等高元素布局
过往的实现方法是使用浮动加计算布局来实现,当flex和grid问世时,这一切将变得简单起来 一、简单的两列实现 1、先看页面效果 2、css代码 .container {padding: 10px;width: 100ch;margin: 0 auto;box-shadow: inset 0 0 0 2px #ccc;}.column {margin: 2…...
如何防止Eclipse格式化程序在行注释开头插入空格
格式化前: //foo bar 格式化后: // foo bar 这种看着不是很舒服。如果不让格式化时自动在注释符后面插入空格呢? 要在Eclipse中进行代码格式化时防止在行注释(//)后面自动增加空格,可以通过调整…...
Nextjs 调用组件内的方法
在 Next.js 中,如果你想从一个组件外部调用组件内部的方法,可以使用 React 的 useRef 钩子来引用组件实例并调用其方法。这种方法主要适用于类组件,但也可以用于函数组件,通过将方法暴露在 ref 对象上。 以下是一个示例ÿ…...
ip地址是电脑还是网线决定的
在数字化时代的浪潮中,网络已经成为了我们日常生活和工作不可或缺的一部分。当我们谈论网络时,IP地址无疑是一个核心的概念。然而,关于IP地址的分配和决定因素,很多人可能存在误解。有些人认为IP地址是由电脑决定的,而…...
Hadoop中HDFS、Hive 和 HBase三者之间的关系
HDFS(Hadoop Distributed File System)、Hive 和 HBase 是 Hadoop 生态系统中三个重要的组件,它们各自解决了大数据存储和处理的不同层面的问题。我们用大白话来解释这三个组件之间的关系: HDFS - 数据的仓库: HDFS 是…...
opencv—常用函数学习_“干货“_10
目录 二七、离散余弦变换 执行离散余弦变换 (dct) 和逆变换 (idct) 解释 实际应用 JPEG压缩示例(简化版) 二八、图像几何变换 仿射变换 (warpAffine 和 getAffineTransform) 透视变换 (warpPerspective 和 getPerspectiveTransform) 旋转变换 (g…...
Jmeter二次开发Demo
Jmeter二次开发Demo 前言 在上一集,我们已经完成了JMX脚本的分析,大致了解了JMX脚本的基本元素。 那么在这一集,我们将会介绍一下Jmeter二次开发的Demo。 Demo代码 那么话不多说,我们就直接上代码。 public class TestStress…...
MongoDB综合实战篇(超容易)
一、题目引入 在MongoDB的gk集合里插入以下数据: 用语句完成如下功能: (1)查询张三同学的成绩信息 (2)查询李四同学的语文成绩 (3)查询没有选化学的同学 (4…...
谷歌浏览器插件
项目中有时候会用到插件 sync-cookie-extension1.0.0:开发环境同步测试 cookie 至 localhost,便于本地请求服务携带 cookie 参考地址:https://juejin.cn/post/7139354571712757767 里面有源码下载下来,加在到扩展即可使用FeHelp…...
[2025CVPR]DeepVideo-R1:基于难度感知回归GRPO的视频强化微调框架详解
突破视频大语言模型推理瓶颈,在多个视频基准上实现SOTA性能 一、核心问题与创新亮点 1.1 GRPO在视频任务中的两大挑战 安全措施依赖问题 GRPO使用min和clip函数限制策略更新幅度,导致: 梯度抑制:当新旧策略差异过大时梯度消失收敛困难:策略无法充分优化# 传统GRPO的梯…...
Java 8 Stream API 入门到实践详解
一、告别 for 循环! 传统痛点: Java 8 之前,集合操作离不开冗长的 for 循环和匿名类。例如,过滤列表中的偶数: List<Integer> list Arrays.asList(1, 2, 3, 4, 5); List<Integer> evens new ArrayList…...
学习STC51单片机31(芯片为STC89C52RCRC)OLED显示屏1
每日一言 生活的美好,总是藏在那些你咬牙坚持的日子里。 硬件:OLED 以后要用到OLED的时候找到这个文件 OLED的设备地址 SSD1306"SSD" 是品牌缩写,"1306" 是产品编号。 驱动 OLED 屏幕的 IIC 总线数据传输格式 示意图 …...
(转)什么是DockerCompose?它有什么作用?
一、什么是DockerCompose? DockerCompose可以基于Compose文件帮我们快速的部署分布式应用,而无需手动一个个创建和运行容器。 Compose文件是一个文本文件,通过指令定义集群中的每个容器如何运行。 DockerCompose就是把DockerFile转换成指令去运行。 …...
智能仓储的未来:自动化、AI与数据分析如何重塑物流中心
当仓库学会“思考”,物流的终极形态正在诞生 想象这样的场景: 凌晨3点,某物流中心灯火通明却空无一人。AGV机器人集群根据实时订单动态规划路径;AI视觉系统在0.1秒内扫描包裹信息;数字孪生平台正模拟次日峰值流量压力…...
Maven 概述、安装、配置、仓库、私服详解
目录 1、Maven 概述 1.1 Maven 的定义 1.2 Maven 解决的问题 1.3 Maven 的核心特性与优势 2、Maven 安装 2.1 下载 Maven 2.2 安装配置 Maven 2.3 测试安装 2.4 修改 Maven 本地仓库的默认路径 3、Maven 配置 3.1 配置本地仓库 3.2 配置 JDK 3.3 IDEA 配置本地 Ma…...
大语言模型(LLM)中的KV缓存压缩与动态稀疏注意力机制设计
随着大语言模型(LLM)参数规模的增长,推理阶段的内存占用和计算复杂度成为核心挑战。传统注意力机制的计算复杂度随序列长度呈二次方增长,而KV缓存的内存消耗可能高达数十GB(例如Llama2-7B处理100K token时需50GB内存&a…...
力扣-35.搜索插入位置
题目描述 给定一个排序数组和一个目标值,在数组中找到目标值,并返回其索引。如果目标值不存在于数组中,返回它将会被按顺序插入的位置。 请必须使用时间复杂度为 O(log n) 的算法。 class Solution {public int searchInsert(int[] nums, …...
安宝特案例丨Vuzix AR智能眼镜集成专业软件,助力卢森堡医院药房转型,赢得辉瑞创新奖
在Vuzix M400 AR智能眼镜的助力下,卢森堡罗伯特舒曼医院(the Robert Schuman Hospitals, HRS)凭借在无菌制剂生产流程中引入增强现实技术(AR)创新项目,荣获了2024年6月7日由卢森堡医院药剂师协会࿰…...
