当前位置: 首页 > news >正文

【Pytorch】数据集的加载和处理(一)

 Pytorch torchvision 包提供了很多常用数据集

数据按照用途一般分为三组:训练(train)、验证(validation)和测试(test)。使用训练数据集来训练模型,使用验证数据集跟踪模型在训练期间的性能,使用测试数据集对模型进行最终评估。

目录

导入MNIST训练数据集

提取训练数据和标签

同理操作验证数据集

给张量添加维度

打印示例图像


导入MNIST训练数据集

从 torchvision导入MNIST训练数据集

import torch
import torchvision
from torchvision import datasets
train_data=datasets.MNIST("./data",train=True,download=True)

datasets.MNIST是Pytorch的内置函数

train=True指导入的数据作为训练数据集

download=True若根目录下没有数据集时自动下载

 导入完成后可以看到MINST文件内的数据集

提取训练数据和标签

x_train, y_train=train_data.data,train_data.targets
print(x_train.shape)
print(y_train.shape)

x_train存储60000张28*28的图片,y_train存储60000张图片对应的数字(label)

同理操作验证数据集

从 torchvision导入MNIST验证数据集并提取数据和标签

val_data=datasets.MNIST("./data", train=False, download=True)
x_val,y_val=val_data.data, val_data.targets
print(x_val.shape)
print(y_val.shape)

 

给张量添加维度

Pytorch中张量可以是一维、二维、三维或者更高维度的数据结构。一维张量类似于向量,二维张量类似于矩阵,三维张量类似一系列矩阵的堆叠。添加新的维度可以更好地对数据进行表示和处理。

if len(x_train.shape)==3:x_train=x_train.unsqueeze(1)
print(x_train.shape)if len(x_val.shape)==3:x_val=x_val.unsqueeze(1)
print(x_val.shape)

 .unsqueeze(0)指添加在第一个维度

也可以通过x_train.view(60000,1,28,28)添加维度

可以看到张量由三维变为了四维 

打印示例图像

引入所需的包,定义一个辅助函数,将张量显示为图像

from torchvision import utils
import matplotlib.pyplot as plt
import numpy as np
def show(img):npimg = img.numpy()npimg_tr=np.transpose(npimg, (1,2,0))plt.imshow(npimg_tr,interpolation='nearest')

创建一个10*10的网格,每行10张图片,pedding=3指间隔为3

x_grid=utils.make_grid(x_train[:100], nrow=10, padding=3)
print(x_grid.shape)
show(x_grid)

utils.make_grid实际上是将多张图片拼接起来,参照官方介绍:

相关文章:

【Pytorch】数据集的加载和处理(一)

Pytorch torchvision 包提供了很多常用数据集 数据按照用途一般分为三组:训练(train)、验证(validation)和测试(test)。使用训练数据集来训练模型,使用验证数据集跟踪模型在训练期间…...

论文翻译:Explainability for Large Language Models: A Survey

https://arxiv.org/pdf/2309.01029 目录 可解释性在大型语言模型中:一项调查摘要1 引言2 LLMs的训练范式2.1 传统微调范式2.2 提示范式 3 传统微调范式的解释3.1 局部解释3.1.1 基于特征归因的解释3.1.2 基于注意力的解释3.1.3 基于示例的解释 3.2 全局解释3.2.1 基…...

38 IRF+链路聚合+ACL+NAT组网架构

38 IRF+链路聚合+ACL+NAT组网架构 参考文献 34 IRF的实例-CSDN博客 35 解决单条链路故障问题-华三链路聚合-CSDN博客 36 最经典的ACL控制-CSDN博客 37 公私网转换技术-NAT基础-CSDN博客 32 华三vlan案例+STP-CSDN博客 一 网络架构...

【昇思学习打卡营打卡-第二十八天】MindNLP ChatGLM-6B StreamChat

MindNLP ChatGLM-6B StreamChat 本案例基于MindNLP和ChatGLM-6B实现一个聊天应用。 安装mindnlp pip install mindnlp安装mdtex2html pip install mdtex2html配置网络线路 export HF_ENDPOINThttps://hf-mirror.com代码开发 下载权重大约需要10分钟 from mindnlp.transf…...

前端打包部署后源码安全问题总结

随着现代Web应用越来越依赖于客户端技术,前端安全问题也随之突显。源码泄露是一个严重的安全问题,它不仅暴露了应用的内部逻辑和业务关键信息,还可能导致更广泛的安全风险。本文将详细介绍源码泄露的潜在风险,并提供一系列策略和工…...

扩展你的App:Xcode中App Extensions的深度指南

扩展你的App:Xcode中App Extensions的深度指南 在iOS开发的世界中,App Extensions提供了一种强大的方式,允许你的应用程序与系统和其他应用更紧密地集成。从今天起,我们将探索Xcode中App Extensions的神秘领域,学习如…...

【D3.js in Action 3 精译】1.3 D3 视角下的数据可视化最佳实践(下)

当前内容所在位置 第一部分 D3.js 基础知识 第一章 D3.js 简介 ✔️ 1.1 何为 D3.js?1.2 D3 生态系统——入门须知 1.2.1 HTML 与 DOM1.2.2 SVG - 可缩放矢量图形1.2.3 Canvas 与 WebGL1.2.4 CSS1.2.5 JavaScript1.2.6 Node 与 JavaScript 框架1.2.7 Observable 记事…...

Solus Linux简介

以下是学习笔记,具体详实的内容请参考官网:Home | Solus Solus Linux 是一个独立的 Linux 发行版,它以其现代的设计、优化的性能和友好的用户体验而著称。以下是一些关于 Solus Linux 的最新动向和特点: 1. **最新版本发布**&a…...

常见的排序算法,复杂度

稳定 / 非稳定排序:两个相等的数 排序前后 相对位置不变。插入排序(希尔排序): 每一趟将一个待排序记录,按其关键字的大小插入到已排好序的一组记录的适当位置上,直到所有待排序记录全部插入为止。稳定&…...

鸿蒙特色物联网实训室

一、 引言 在当今这个万物皆可连网的时代,物联网(IoT)正以前所未有的速度改变着我们的生活和工作方式。它如同一座桥梁,将实体世界与虚拟空间紧密相连,让数据成为驱动决策和创新的关键力量。随着物联网技术的不断成熟…...

JVM垃圾回收-----垃圾分类

一、垃圾分类定义 垃圾分类是JVM垃圾分类中的第一步,这一步将堆中的对象分为存活对象和垃圾对象两类。 在垃圾分类阶段,JVM会从一组根对象开始,通过对象之间的引用关系,遍历所有的对象,并将所有存活的对象进行标记。…...

前端基础之JavaScript学习——变量、数据类型、类型转换

大家好,我是来自CSDN的博主PleaSure乐事,今天我们开始有关JS的学习,希望有所帮助并巩固有关前端的知识。 我使用的编译器为vscode,浏览器使用为谷歌浏览器,使用webstorm或其他环境效果几乎一样,使用系统自…...

SQL常用数据过滤---IN操作符

在SQL中,IN操作符常用于过滤数据,允许在WHERE子句中指定多个可能的值。如果列中的值匹配IN操作符后面括号中的任何一个值,那么该行就会被选中。 以下是使用IN操作符的基本语法: SELECT column1, column2, ... FROM table_name WH…...

HDFS和FDFS

HDFS(Hadoop Distributed File System)和FDFS(FastDFS)是两种不同的分布式文件系统,它们各自有不同的设计目标和使用场景。以下是对它们的详细介绍: HDFS(Hadoop Distributed File System&…...

Flutter对接FlutterBugly 报错Zone mismatch

在Flutter对接FutterBlugy时报如下错误: Unhandled Exception: Zone mismatch. E/flutter ( 1292): The Flutter bindings were initialized in a different zone than is now being used. This will likely cause confusion and bugs...

Docker缩小镜像体积与搭建LNMP架构

镜像加速地址 {"registry-mirrors": ["https://docker.m.daocloud.io","https://docker.1panel.live"] } daemon.json 配置文件里面 bip 配置项中可以配置docker 的网段 {"graph": "/data/docker", #数据目录&#xff0…...

六边形动态特效404单页HTML源码

源码介绍 动态悬浮的六边形,旁边404文字以及跳转按钮,整体看着像科技二次元画风,页面简约美观,可以做网站错误页或者丢失页面,将下面的代码放到空白的HTML里面,然后上传到服务器里面,设置好重定向即可 效果预览 完整源码 <!DOCTYPE html> <html><head…...

BGP路径属性

路径属性分类 1. 公认属性&#xff08;所有 BGP 路由器都能识别&#xff09; (1) 公认必遵 a&#xff09; AS path b&#xff09;Origin c&#xff09; Next hop (2) 公认任意 a&#xff09; local preference b&#xff09;atomic aggregate 2. 可选属性&#xff08;…...

从零开始学量化~Ptrade使用教程(六)——盘后定价交易、港股通与债券通用质押式回购

盘后固定价交易 实现科创板、创业板的盘后固定价交易&#xff0c;界面如下显示&#xff1a; 交易 输入科创板或创业板代码&#xff0c;选择委托方向&#xff0c;输入委托价格、委托数量&#xff0c;点击“买入”或“卖出”按钮进行委托。可出现一个委托提示框提示是否继续委托操…...

Docker 三剑客

文章目录 Docker 三剑客1. Docker Engine功能与特点&#xff1a;工作原理&#xff1a;示例命令&#xff1a; 2. Docker Compose功能与特点&#xff1a;工作原理&#xff1a;示例文件 (docker-compose.yml)&#xff1a;示例命令&#xff1a; 3. Docker Swarm功能与特点&#xff…...

利用最小二乘法找圆心和半径

#include <iostream> #include <vector> #include <cmath> #include <Eigen/Dense> // 需安装Eigen库用于矩阵运算 // 定义点结构 struct Point { double x, y; Point(double x_, double y_) : x(x_), y(y_) {} }; // 最小二乘法求圆心和半径 …...

<6>-MySQL表的增删查改

目录 一&#xff0c;create&#xff08;创建表&#xff09; 二&#xff0c;retrieve&#xff08;查询表&#xff09; 1&#xff0c;select列 2&#xff0c;where条件 三&#xff0c;update&#xff08;更新表&#xff09; 四&#xff0c;delete&#xff08;删除表&#xf…...

基于ASP.NET+ SQL Server实现(Web)医院信息管理系统

医院信息管理系统 1. 课程设计内容 在 visual studio 2017 平台上&#xff0c;开发一个“医院信息管理系统”Web 程序。 2. 课程设计目的 综合运用 c#.net 知识&#xff0c;在 vs 2017 平台上&#xff0c;进行 ASP.NET 应用程序和简易网站的开发&#xff1b;初步熟悉开发一…...

React19源码系列之 事件插件系统

事件类别 事件类型 定义 文档 Event Event 接口表示在 EventTarget 上出现的事件。 Event - Web API | MDN UIEvent UIEvent 接口表示简单的用户界面事件。 UIEvent - Web API | MDN KeyboardEvent KeyboardEvent 对象描述了用户与键盘的交互。 KeyboardEvent - Web…...

第 86 场周赛:矩阵中的幻方、钥匙和房间、将数组拆分成斐波那契序列、猜猜这个单词

Q1、[中等] 矩阵中的幻方 1、题目描述 3 x 3 的幻方是一个填充有 从 1 到 9 的不同数字的 3 x 3 矩阵&#xff0c;其中每行&#xff0c;每列以及两条对角线上的各数之和都相等。 给定一个由整数组成的row x col 的 grid&#xff0c;其中有多少个 3 3 的 “幻方” 子矩阵&am…...

CMake控制VS2022项目文件分组

我们可以通过 CMake 控制源文件的组织结构,使它们在 VS 解决方案资源管理器中以“组”(Filter)的形式进行分类展示。 🎯 目标 通过 CMake 脚本将 .cpp、.h 等源文件分组显示在 Visual Studio 2022 的解决方案资源管理器中。 ✅ 支持的方法汇总(共4种) 方法描述是否推荐…...

项目部署到Linux上时遇到的错误(Redis,MySQL,无法正确连接,地址占用问题)

Redis无法正确连接 在运行jar包时出现了这样的错误 查询得知问题核心在于Redis连接失败&#xff0c;具体原因是客户端发送了密码认证请求&#xff0c;但Redis服务器未设置密码 1.为Redis设置密码&#xff08;匹配客户端配置&#xff09; 步骤&#xff1a; 1&#xff09;.修…...

有限自动机到正规文法转换器v1.0

1 项目简介 这是一个功能强大的有限自动机&#xff08;Finite Automaton, FA&#xff09;到正规文法&#xff08;Regular Grammar&#xff09;转换器&#xff0c;它配备了一个直观且完整的图形用户界面&#xff0c;使用户能够轻松地进行操作和观察。该程序基于编译原理中的经典…...

深度学习习题2

1.如果增加神经网络的宽度&#xff0c;精确度会增加到一个特定阈值后&#xff0c;便开始降低。造成这一现象的可能原因是什么&#xff1f; A、即使增加卷积核的数量&#xff0c;只有少部分的核会被用作预测 B、当卷积核数量增加时&#xff0c;神经网络的预测能力会降低 C、当卷…...

Android第十三次面试总结(四大 组件基础)

Activity生命周期和四大启动模式详解 一、Activity 生命周期 Activity 的生命周期由一系列回调方法组成&#xff0c;用于管理其创建、可见性、焦点和销毁过程。以下是核心方法及其调用时机&#xff1a; ​onCreate()​​ ​调用时机​&#xff1a;Activity 首次创建时调用。​…...