【Pytorch】数据集的加载和处理(一)
Pytorch torchvision 包提供了很多常用数据集
数据按照用途一般分为三组:训练(train)、验证(validation)和测试(test)。使用训练数据集来训练模型,使用验证数据集跟踪模型在训练期间的性能,使用测试数据集对模型进行最终评估。
目录
导入MNIST训练数据集
提取训练数据和标签
同理操作验证数据集
给张量添加维度
打印示例图像
导入MNIST训练数据集
从 torchvision导入MNIST训练数据集
import torch
import torchvision
from torchvision import datasets
train_data=datasets.MNIST("./data",train=True,download=True)
datasets.MNIST是Pytorch的内置函数
train=True指导入的数据作为训练数据集
download=True若根目录下没有数据集时自动下载
导入完成后可以看到MINST文件内的数据集


提取训练数据和标签
x_train, y_train=train_data.data,train_data.targets
print(x_train.shape)
print(y_train.shape)

x_train存储60000张28*28的图片,y_train存储60000张图片对应的数字(label)
同理操作验证数据集
从 torchvision导入MNIST验证数据集并提取数据和标签
val_data=datasets.MNIST("./data", train=False, download=True)
x_val,y_val=val_data.data, val_data.targets
print(x_val.shape)
print(y_val.shape)

给张量添加维度
Pytorch中张量可以是一维、二维、三维或者更高维度的数据结构。一维张量类似于向量,二维张量类似于矩阵,三维张量类似一系列矩阵的堆叠。添加新的维度可以更好地对数据进行表示和处理。
if len(x_train.shape)==3:x_train=x_train.unsqueeze(1)
print(x_train.shape)if len(x_val.shape)==3:x_val=x_val.unsqueeze(1)
print(x_val.shape)
.unsqueeze(0)指添加在第一个维度
也可以通过x_train.view(60000,1,28,28)添加维度
可以看到张量由三维变为了四维

打印示例图像
引入所需的包,定义一个辅助函数,将张量显示为图像
from torchvision import utils
import matplotlib.pyplot as plt
import numpy as np
def show(img):npimg = img.numpy()npimg_tr=np.transpose(npimg, (1,2,0))plt.imshow(npimg_tr,interpolation='nearest')
创建一个10*10的网格,每行10张图片,pedding=3指间隔为3
x_grid=utils.make_grid(x_train[:100], nrow=10, padding=3)
print(x_grid.shape)
show(x_grid)

utils.make_grid实际上是将多张图片拼接起来,参照官方介绍:
相关文章:
【Pytorch】数据集的加载和处理(一)
Pytorch torchvision 包提供了很多常用数据集 数据按照用途一般分为三组:训练(train)、验证(validation)和测试(test)。使用训练数据集来训练模型,使用验证数据集跟踪模型在训练期间…...
论文翻译:Explainability for Large Language Models: A Survey
https://arxiv.org/pdf/2309.01029 目录 可解释性在大型语言模型中:一项调查摘要1 引言2 LLMs的训练范式2.1 传统微调范式2.2 提示范式 3 传统微调范式的解释3.1 局部解释3.1.1 基于特征归因的解释3.1.2 基于注意力的解释3.1.3 基于示例的解释 3.2 全局解释3.2.1 基…...
38 IRF+链路聚合+ACL+NAT组网架构
38 IRF+链路聚合+ACL+NAT组网架构 参考文献 34 IRF的实例-CSDN博客 35 解决单条链路故障问题-华三链路聚合-CSDN博客 36 最经典的ACL控制-CSDN博客 37 公私网转换技术-NAT基础-CSDN博客 32 华三vlan案例+STP-CSDN博客 一 网络架构...
【昇思学习打卡营打卡-第二十八天】MindNLP ChatGLM-6B StreamChat
MindNLP ChatGLM-6B StreamChat 本案例基于MindNLP和ChatGLM-6B实现一个聊天应用。 安装mindnlp pip install mindnlp安装mdtex2html pip install mdtex2html配置网络线路 export HF_ENDPOINThttps://hf-mirror.com代码开发 下载权重大约需要10分钟 from mindnlp.transf…...
前端打包部署后源码安全问题总结
随着现代Web应用越来越依赖于客户端技术,前端安全问题也随之突显。源码泄露是一个严重的安全问题,它不仅暴露了应用的内部逻辑和业务关键信息,还可能导致更广泛的安全风险。本文将详细介绍源码泄露的潜在风险,并提供一系列策略和工…...
扩展你的App:Xcode中App Extensions的深度指南
扩展你的App:Xcode中App Extensions的深度指南 在iOS开发的世界中,App Extensions提供了一种强大的方式,允许你的应用程序与系统和其他应用更紧密地集成。从今天起,我们将探索Xcode中App Extensions的神秘领域,学习如…...
【D3.js in Action 3 精译】1.3 D3 视角下的数据可视化最佳实践(下)
当前内容所在位置 第一部分 D3.js 基础知识 第一章 D3.js 简介 ✔️ 1.1 何为 D3.js?1.2 D3 生态系统——入门须知 1.2.1 HTML 与 DOM1.2.2 SVG - 可缩放矢量图形1.2.3 Canvas 与 WebGL1.2.4 CSS1.2.5 JavaScript1.2.6 Node 与 JavaScript 框架1.2.7 Observable 记事…...
Solus Linux简介
以下是学习笔记,具体详实的内容请参考官网:Home | Solus Solus Linux 是一个独立的 Linux 发行版,它以其现代的设计、优化的性能和友好的用户体验而著称。以下是一些关于 Solus Linux 的最新动向和特点: 1. **最新版本发布**&a…...
常见的排序算法,复杂度
稳定 / 非稳定排序:两个相等的数 排序前后 相对位置不变。插入排序(希尔排序): 每一趟将一个待排序记录,按其关键字的大小插入到已排好序的一组记录的适当位置上,直到所有待排序记录全部插入为止。稳定&…...
鸿蒙特色物联网实训室
一、 引言 在当今这个万物皆可连网的时代,物联网(IoT)正以前所未有的速度改变着我们的生活和工作方式。它如同一座桥梁,将实体世界与虚拟空间紧密相连,让数据成为驱动决策和创新的关键力量。随着物联网技术的不断成熟…...
JVM垃圾回收-----垃圾分类
一、垃圾分类定义 垃圾分类是JVM垃圾分类中的第一步,这一步将堆中的对象分为存活对象和垃圾对象两类。 在垃圾分类阶段,JVM会从一组根对象开始,通过对象之间的引用关系,遍历所有的对象,并将所有存活的对象进行标记。…...
前端基础之JavaScript学习——变量、数据类型、类型转换
大家好,我是来自CSDN的博主PleaSure乐事,今天我们开始有关JS的学习,希望有所帮助并巩固有关前端的知识。 我使用的编译器为vscode,浏览器使用为谷歌浏览器,使用webstorm或其他环境效果几乎一样,使用系统自…...
SQL常用数据过滤---IN操作符
在SQL中,IN操作符常用于过滤数据,允许在WHERE子句中指定多个可能的值。如果列中的值匹配IN操作符后面括号中的任何一个值,那么该行就会被选中。 以下是使用IN操作符的基本语法: SELECT column1, column2, ... FROM table_name WH…...
HDFS和FDFS
HDFS(Hadoop Distributed File System)和FDFS(FastDFS)是两种不同的分布式文件系统,它们各自有不同的设计目标和使用场景。以下是对它们的详细介绍: HDFS(Hadoop Distributed File System&…...
Flutter对接FlutterBugly 报错Zone mismatch
在Flutter对接FutterBlugy时报如下错误: Unhandled Exception: Zone mismatch. E/flutter ( 1292): The Flutter bindings were initialized in a different zone than is now being used. This will likely cause confusion and bugs...
Docker缩小镜像体积与搭建LNMP架构
镜像加速地址 {"registry-mirrors": ["https://docker.m.daocloud.io","https://docker.1panel.live"] } daemon.json 配置文件里面 bip 配置项中可以配置docker 的网段 {"graph": "/data/docker", #数据目录࿰…...
六边形动态特效404单页HTML源码
源码介绍 动态悬浮的六边形,旁边404文字以及跳转按钮,整体看着像科技二次元画风,页面简约美观,可以做网站错误页或者丢失页面,将下面的代码放到空白的HTML里面,然后上传到服务器里面,设置好重定向即可 效果预览 完整源码 <!DOCTYPE html> <html><head…...
BGP路径属性
路径属性分类 1. 公认属性(所有 BGP 路由器都能识别) (1) 公认必遵 a) AS path b)Origin c) Next hop (2) 公认任意 a) local preference b)atomic aggregate 2. 可选属性(…...
从零开始学量化~Ptrade使用教程(六)——盘后定价交易、港股通与债券通用质押式回购
盘后固定价交易 实现科创板、创业板的盘后固定价交易,界面如下显示: 交易 输入科创板或创业板代码,选择委托方向,输入委托价格、委托数量,点击“买入”或“卖出”按钮进行委托。可出现一个委托提示框提示是否继续委托操…...
Docker 三剑客
文章目录 Docker 三剑客1. Docker Engine功能与特点:工作原理:示例命令: 2. Docker Compose功能与特点:工作原理:示例文件 (docker-compose.yml):示例命令: 3. Docker Swarm功能与特点ÿ…...
UE5 学习系列(二)用户操作界面及介绍
这篇博客是 UE5 学习系列博客的第二篇,在第一篇的基础上展开这篇内容。博客参考的 B 站视频资料和第一篇的链接如下: 【Note】:如果你已经完成安装等操作,可以只执行第一篇博客中 2. 新建一个空白游戏项目 章节操作,重…...
日语学习-日语知识点小记-构建基础-JLPT-N4阶段(33):にする
日语学习-日语知识点小记-构建基础-JLPT-N4阶段(33):にする 1、前言(1)情况说明(2)工程师的信仰2、知识点(1) にする1,接续:名词+にする2,接续:疑问词+にする3,(A)は(B)にする。(2)復習:(1)复习句子(2)ために & ように(3)そう(4)にする3、…...
从深圳崛起的“机器之眼”:赴港乐动机器人的万亿赛道赶考路
进入2025年以来,尽管围绕人形机器人、具身智能等机器人赛道的质疑声不断,但全球市场热度依然高涨,入局者持续增加。 以国内市场为例,天眼查专业版数据显示,截至5月底,我国现存在业、存续状态的机器人相关企…...
04-初识css
一、css样式引入 1.1.内部样式 <div style"width: 100px;"></div>1.2.外部样式 1.2.1.外部样式1 <style>.aa {width: 100px;} </style> <div class"aa"></div>1.2.2.外部样式2 <!-- rel内表面引入的是style样…...
多模态大语言模型arxiv论文略读(108)
CROME: Cross-Modal Adapters for Efficient Multimodal LLM ➡️ 论文标题:CROME: Cross-Modal Adapters for Efficient Multimodal LLM ➡️ 论文作者:Sayna Ebrahimi, Sercan O. Arik, Tejas Nama, Tomas Pfister ➡️ 研究机构: Google Cloud AI Re…...
如何在最短时间内提升打ctf(web)的水平?
刚刚刷完2遍 bugku 的 web 题,前来答题。 每个人对刷题理解是不同,有的人是看了writeup就等于刷了,有的人是收藏了writeup就等于刷了,有的人是跟着writeup做了一遍就等于刷了,还有的人是独立思考做了一遍就等于刷了。…...
2023赣州旅游投资集团
单选题 1.“不登高山,不知天之高也;不临深溪,不知地之厚也。”这句话说明_____。 A、人的意识具有创造性 B、人的认识是独立于实践之外的 C、实践在认识过程中具有决定作用 D、人的一切知识都是从直接经验中获得的 参考答案: C 本题解…...
【VLNs篇】07:NavRL—在动态环境中学习安全飞行
项目内容论文标题NavRL: 在动态环境中学习安全飞行 (NavRL: Learning Safe Flight in Dynamic Environments)核心问题解决无人机在包含静态和动态障碍物的复杂环境中进行安全、高效自主导航的挑战,克服传统方法和现有强化学习方法的局限性。核心算法基于近端策略优化…...
Sklearn 机器学习 缺失值处理 获取填充失值的统计值
💖亲爱的技术爱好者们,热烈欢迎来到 Kant2048 的博客!我是 Thomas Kant,很开心能在CSDN上与你们相遇~💖 本博客的精华专栏: 【自动化测试】 【测试经验】 【人工智能】 【Python】 使用 Scikit-learn 处理缺失值并提取填充统计信息的完整指南 在机器学习项目中,数据清…...
规则与人性的天平——由高考迟到事件引发的思考
当那位身着校服的考生在考场关闭1分钟后狂奔而至,他涨红的脸上写满绝望。铁门内秒针划过的弧度,成为改变人生的残酷抛物线。家长声嘶力竭的哀求与考务人员机械的"这是规定",构成当代中国教育最尖锐的隐喻。 一、刚性规则的必要性 …...
