当前位置: 首页 > news >正文

【Pytorch】数据集的加载和处理(一)

 Pytorch torchvision 包提供了很多常用数据集

数据按照用途一般分为三组:训练(train)、验证(validation)和测试(test)。使用训练数据集来训练模型,使用验证数据集跟踪模型在训练期间的性能,使用测试数据集对模型进行最终评估。

目录

导入MNIST训练数据集

提取训练数据和标签

同理操作验证数据集

给张量添加维度

打印示例图像


导入MNIST训练数据集

从 torchvision导入MNIST训练数据集

import torch
import torchvision
from torchvision import datasets
train_data=datasets.MNIST("./data",train=True,download=True)

datasets.MNIST是Pytorch的内置函数

train=True指导入的数据作为训练数据集

download=True若根目录下没有数据集时自动下载

 导入完成后可以看到MINST文件内的数据集

提取训练数据和标签

x_train, y_train=train_data.data,train_data.targets
print(x_train.shape)
print(y_train.shape)

x_train存储60000张28*28的图片,y_train存储60000张图片对应的数字(label)

同理操作验证数据集

从 torchvision导入MNIST验证数据集并提取数据和标签

val_data=datasets.MNIST("./data", train=False, download=True)
x_val,y_val=val_data.data, val_data.targets
print(x_val.shape)
print(y_val.shape)

 

给张量添加维度

Pytorch中张量可以是一维、二维、三维或者更高维度的数据结构。一维张量类似于向量,二维张量类似于矩阵,三维张量类似一系列矩阵的堆叠。添加新的维度可以更好地对数据进行表示和处理。

if len(x_train.shape)==3:x_train=x_train.unsqueeze(1)
print(x_train.shape)if len(x_val.shape)==3:x_val=x_val.unsqueeze(1)
print(x_val.shape)

 .unsqueeze(0)指添加在第一个维度

也可以通过x_train.view(60000,1,28,28)添加维度

可以看到张量由三维变为了四维 

打印示例图像

引入所需的包,定义一个辅助函数,将张量显示为图像

from torchvision import utils
import matplotlib.pyplot as plt
import numpy as np
def show(img):npimg = img.numpy()npimg_tr=np.transpose(npimg, (1,2,0))plt.imshow(npimg_tr,interpolation='nearest')

创建一个10*10的网格,每行10张图片,pedding=3指间隔为3

x_grid=utils.make_grid(x_train[:100], nrow=10, padding=3)
print(x_grid.shape)
show(x_grid)

utils.make_grid实际上是将多张图片拼接起来,参照官方介绍:

相关文章:

【Pytorch】数据集的加载和处理(一)

Pytorch torchvision 包提供了很多常用数据集 数据按照用途一般分为三组:训练(train)、验证(validation)和测试(test)。使用训练数据集来训练模型,使用验证数据集跟踪模型在训练期间…...

论文翻译:Explainability for Large Language Models: A Survey

https://arxiv.org/pdf/2309.01029 目录 可解释性在大型语言模型中:一项调查摘要1 引言2 LLMs的训练范式2.1 传统微调范式2.2 提示范式 3 传统微调范式的解释3.1 局部解释3.1.1 基于特征归因的解释3.1.2 基于注意力的解释3.1.3 基于示例的解释 3.2 全局解释3.2.1 基…...

38 IRF+链路聚合+ACL+NAT组网架构

38 IRF+链路聚合+ACL+NAT组网架构 参考文献 34 IRF的实例-CSDN博客 35 解决单条链路故障问题-华三链路聚合-CSDN博客 36 最经典的ACL控制-CSDN博客 37 公私网转换技术-NAT基础-CSDN博客 32 华三vlan案例+STP-CSDN博客 一 网络架构...

【昇思学习打卡营打卡-第二十八天】MindNLP ChatGLM-6B StreamChat

MindNLP ChatGLM-6B StreamChat 本案例基于MindNLP和ChatGLM-6B实现一个聊天应用。 安装mindnlp pip install mindnlp安装mdtex2html pip install mdtex2html配置网络线路 export HF_ENDPOINThttps://hf-mirror.com代码开发 下载权重大约需要10分钟 from mindnlp.transf…...

前端打包部署后源码安全问题总结

随着现代Web应用越来越依赖于客户端技术,前端安全问题也随之突显。源码泄露是一个严重的安全问题,它不仅暴露了应用的内部逻辑和业务关键信息,还可能导致更广泛的安全风险。本文将详细介绍源码泄露的潜在风险,并提供一系列策略和工…...

扩展你的App:Xcode中App Extensions的深度指南

扩展你的App:Xcode中App Extensions的深度指南 在iOS开发的世界中,App Extensions提供了一种强大的方式,允许你的应用程序与系统和其他应用更紧密地集成。从今天起,我们将探索Xcode中App Extensions的神秘领域,学习如…...

【D3.js in Action 3 精译】1.3 D3 视角下的数据可视化最佳实践(下)

当前内容所在位置 第一部分 D3.js 基础知识 第一章 D3.js 简介 ✔️ 1.1 何为 D3.js?1.2 D3 生态系统——入门须知 1.2.1 HTML 与 DOM1.2.2 SVG - 可缩放矢量图形1.2.3 Canvas 与 WebGL1.2.4 CSS1.2.5 JavaScript1.2.6 Node 与 JavaScript 框架1.2.7 Observable 记事…...

Solus Linux简介

以下是学习笔记,具体详实的内容请参考官网:Home | Solus Solus Linux 是一个独立的 Linux 发行版,它以其现代的设计、优化的性能和友好的用户体验而著称。以下是一些关于 Solus Linux 的最新动向和特点: 1. **最新版本发布**&a…...

常见的排序算法,复杂度

稳定 / 非稳定排序:两个相等的数 排序前后 相对位置不变。插入排序(希尔排序): 每一趟将一个待排序记录,按其关键字的大小插入到已排好序的一组记录的适当位置上,直到所有待排序记录全部插入为止。稳定&…...

鸿蒙特色物联网实训室

一、 引言 在当今这个万物皆可连网的时代,物联网(IoT)正以前所未有的速度改变着我们的生活和工作方式。它如同一座桥梁,将实体世界与虚拟空间紧密相连,让数据成为驱动决策和创新的关键力量。随着物联网技术的不断成熟…...

JVM垃圾回收-----垃圾分类

一、垃圾分类定义 垃圾分类是JVM垃圾分类中的第一步,这一步将堆中的对象分为存活对象和垃圾对象两类。 在垃圾分类阶段,JVM会从一组根对象开始,通过对象之间的引用关系,遍历所有的对象,并将所有存活的对象进行标记。…...

前端基础之JavaScript学习——变量、数据类型、类型转换

大家好,我是来自CSDN的博主PleaSure乐事,今天我们开始有关JS的学习,希望有所帮助并巩固有关前端的知识。 我使用的编译器为vscode,浏览器使用为谷歌浏览器,使用webstorm或其他环境效果几乎一样,使用系统自…...

SQL常用数据过滤---IN操作符

在SQL中,IN操作符常用于过滤数据,允许在WHERE子句中指定多个可能的值。如果列中的值匹配IN操作符后面括号中的任何一个值,那么该行就会被选中。 以下是使用IN操作符的基本语法: SELECT column1, column2, ... FROM table_name WH…...

HDFS和FDFS

HDFS(Hadoop Distributed File System)和FDFS(FastDFS)是两种不同的分布式文件系统,它们各自有不同的设计目标和使用场景。以下是对它们的详细介绍: HDFS(Hadoop Distributed File System&…...

Flutter对接FlutterBugly 报错Zone mismatch

在Flutter对接FutterBlugy时报如下错误: Unhandled Exception: Zone mismatch. E/flutter ( 1292): The Flutter bindings were initialized in a different zone than is now being used. This will likely cause confusion and bugs...

Docker缩小镜像体积与搭建LNMP架构

镜像加速地址 {"registry-mirrors": ["https://docker.m.daocloud.io","https://docker.1panel.live"] } daemon.json 配置文件里面 bip 配置项中可以配置docker 的网段 {"graph": "/data/docker", #数据目录&#xff0…...

六边形动态特效404单页HTML源码

源码介绍 动态悬浮的六边形,旁边404文字以及跳转按钮,整体看着像科技二次元画风,页面简约美观,可以做网站错误页或者丢失页面,将下面的代码放到空白的HTML里面,然后上传到服务器里面,设置好重定向即可 效果预览 完整源码 <!DOCTYPE html> <html><head…...

BGP路径属性

路径属性分类 1. 公认属性&#xff08;所有 BGP 路由器都能识别&#xff09; (1) 公认必遵 a&#xff09; AS path b&#xff09;Origin c&#xff09; Next hop (2) 公认任意 a&#xff09; local preference b&#xff09;atomic aggregate 2. 可选属性&#xff08;…...

从零开始学量化~Ptrade使用教程(六)——盘后定价交易、港股通与债券通用质押式回购

盘后固定价交易 实现科创板、创业板的盘后固定价交易&#xff0c;界面如下显示&#xff1a; 交易 输入科创板或创业板代码&#xff0c;选择委托方向&#xff0c;输入委托价格、委托数量&#xff0c;点击“买入”或“卖出”按钮进行委托。可出现一个委托提示框提示是否继续委托操…...

Docker 三剑客

文章目录 Docker 三剑客1. Docker Engine功能与特点&#xff1a;工作原理&#xff1a;示例命令&#xff1a; 2. Docker Compose功能与特点&#xff1a;工作原理&#xff1a;示例文件 (docker-compose.yml)&#xff1a;示例命令&#xff1a; 3. Docker Swarm功能与特点&#xff…...

每天一个数据分析题(四百三十一)- 卡方检验

在列联表分析中&#xff0c;下列不能用卡方检验的是&#xff08;&#xff09; A. 多个构成的比较 B. 多个率的比较 C. 多个均值的比较 D. 以上都不是 数据分析认证考试介绍&#xff1a;点击进入 题目来源于CDA模拟题库 点击此处获取答案 数据分析专项练习题库 内容涵盖…...

Flowable-流程图标与流程演示

BPMN 2.0是业务流程建模符号2.0的缩写。它由Business Process Management Initiative这个非营利协会创建并不断发展。作为一种标识&#xff0c;BPMN 2.0是使用一些符号来明确业务流程设计流程图的一整套符号规范&#xff0c;它能增进业务建模时的沟通效率。目前BPMN2.0是最新的…...

MyBatis源码中的设计模式2

组合模式的应用 组合模式介绍 组合模式(Composite Pattern) 的定义是&#xff1a;将对象组合成树形结构以表示整体和部分的层次结构。组合模式可以让用户统一对待单个对象和对象的组合。 比如&#xff1a;Windows操作系统中的目录结构&#xff0c;通过tree命令实现树形结构展…...

AI发展中的伦理挑战与应对策略

AI发展中的伦理挑战与应对策略 人工智能&#xff08;AI&#xff09;的快速发展在为社会带来许多便利和创新的同时&#xff0c;也带来了诸多伦理挑战。这些挑战主要集中在数据隐私侵犯、信息茧房的制造、歧视性算法、深度伪造技术等方面。针对这些问题&#xff0c;需要从多个层…...

基于用户非兴趣/非偏好/非习惯的推荐

基于用户非兴趣、非偏好、非习惯的推荐是一种个性化推荐技术&#xff0c;旨在为用户提供与其日常行为和兴趣模式不同的推荐内容。这种推荐方法的目的是打破用户的信息过滤和习惯&#xff0c;发现新的、潜在的兴趣点&#xff0c;从而提供更广泛和多样化的推荐结果。 通过收集和分…...

Abaqus基于CT断层扫描的三维重建插件CT2Model 3D

插件介绍 AbyssFish CT2Model 3D V1.0 插件可将采用X射线等方法获取的计算机断层扫描&#xff08;CT&#xff09;图像在Abaqus有限元软件内进行三维重建&#xff0c;进而高效获取可供模拟分析的有限元模型。插件可用于医学影像三维重构、混凝土细观三维重建、岩心数字化等领域…...

Mindspore框架CycleGAN模型实现图像风格迁移|(三)损失函数计算

Mindspore框架&#xff1a;CycleGAN模型实现图像风格迁移算法 Mindspore框架CycleGAN模型实现图像风格迁移|&#xff08;一&#xff09;CycleGAN神经网络模型构建 Mindspore框架CycleGAN模型实现图像风格迁移|&#xff08;二&#xff09;实例数据集&#xff08;苹果2橘子&…...

ENSP中VLAN的设置

VLAN的详细介绍 VLAN&#xff08;Virtual Local Area Network&#xff09;即虚拟局域网&#xff0c;是一种将一个物理的局域网在逻辑上划分成多个广播域的技术。 以下是关于 VLAN 的一些详细介绍&#xff1a; 一、基本概念 1. 作用&#xff1a; - 隔离广播域&#xff1a…...

《后端程序员 · Nacos 常见配置 · 第一弹》

&#x1f4e2; 大家好&#xff0c;我是 【战神刘玉栋】&#xff0c;有10多年的研发经验&#xff0c;致力于前后端技术栈的知识沉淀和传播。 &#x1f497; &#x1f33b; CSDN入驻不久&#xff0c;希望大家多多支持&#xff0c;后续会继续提升文章质量&#xff0c;绝不滥竽充数…...

深入解析HTTPS与HTTP

在当今数字化时代&#xff0c;网络安全已成为社会各界关注的焦点。随着互联网技术的飞速发展&#xff0c;个人和企业的数据安全问题日益凸显。在此背景下&#xff0c;HTTPS作为一种更加安全的通信协议&#xff0c;逐渐取代了传统的HTTP协议&#xff0c;成为保护网络安全的重要屏…...