0/1背包
0/1背包
背包问题是DP最经典的类型之一,而0/1背包是最经典最基础的背包问题。
背包体积为 V V V, n n n种物品,每种物品只有1个,第 i i i种物品对应体积为 c i c_i ci,价值为 w i w_i wi,怎样装填能使背包总价值最大?
由于每件物品只有选(0)与不选(1)两种情况,故称为0/1背包问题。
分析:闫氏DP分析法

- 状态表示
- 集合:定义数组 d p [ i ] [ j ] dp[i][j] dp[i][j],表示当前选取方案的价值。第 i i i行表示只考虑前 i i i个物品的放置情况, j j j表示当前选取体积不超过 j j j的方案集合。
- 属性: M a x Max Max
- 初始化:对于最值问题, d p [ i ] [ 0 ] = f [ 0 ] [ j ] = 0 dp[i][0]=f[0][j]=0 dp[i][0]=f[0][j]=0
- 状态计算: d p [ i ] [ j ] dp[i][j] dp[i][j]:对于第 i i i种物品:
- 不可选第 i i i种物品: v < c [ i ] v<c[i] v<c[i],无法装入背包,背包剩余容积不变。集合状态仍为 [ 1 , i − 1 ] [1,i-1] [1,i−1],直接继承自第 i − 1 i-1 i−1种物品且背包容积仍为 j j j方案的价值。 d p [ i ] [ j ] = d p [ i − 1 ] [ j ] dp[i][j]=dp[i-1][j] dp[i][j]=dp[i−1][j]
- 可选第 i i i种物品:
- 不选第 i i i种物品:若选第 i i i种物品无法保证最优解,则不选,背包剩余容积不变。集合状态仍为 [ 1 , i − 1 ] [1,i-1] [1,i−1],直接继承自第 i − 1 i-1 i−1个物品且背包容积仍为 j j j方案的价值。 d p [ i ] [ j ] = d p [ i − 1 ] [ j ] dp[i][j]=dp[i-1][j] dp[i][j]=dp[i−1][j]
- 选第 i i i种物品:选第 i i i种物品可能导致产生最优解,则选。集合状态仍为 [ 1 , i − 1 ] [1,i-1] [1,i−1],因为0/1背包要求每种物品只能选一次,故继承自第 i − 1 i-1 i−1种物品且背包容积减少 c [ i ] c[i] c[i]方案的价值,并加 w [ i ] w[i] w[i]。 d p [ i ] [ j ] = d p [ i − 1 ] [ j − c [ i ] ] + w [ i ] dp[i][j]=dp[i-1][j-c[i]]+w[i] dp[i][j]=dp[i−1][j−c[i]]+w[i]
- 状态转移方程式: d p [ i ] [ j ] = m a x ( d p [ i − 1 ] [ j ] , d p [ i − 1 ] [ j − c [ i ] ] + w [ i ] ) dp[i][j]=max(dp[i-1][j],dp[i-1][j-c[i]]+w[i]) dp[i][j]=max(dp[i−1][j],dp[i−1][j−c[i]]+w[i])
遍历顺序:物品和背包谁先遍历都可以,根据状态转移方程式,dp数组的当前位置只与正上方和左上方有关,无论哪种遍历顺序,都可以确保在到达当前位置之前,正上方和左上方都有值。
初始化:

void init(){for(int i=0;i<=n;i++) dp[i][0]=0;for(int i=0;i<=v;i++) dp[0][j]=0;
}
void dp(){for(int i=1;i<=n;i++)//遍历物品for(int j=1;j<=v;j++)//遍历背包if(c[i]<=j) dp[i][j]=max(dp[i-1][j],dp[i-1][j-c[i]]+w[i]);else dp[i][j]=dp[i-1][j];
}
时间复杂度O( n v nv nv),空间复杂度O( n v nv nv)
DP表

滚动数组
DP问题的空间复杂度一般很高,可采用滚动数组方式对空间复杂度进行优化。
滚动数组原理是基于DP的无后效性,第 i i i行只与 i − 1 i-1 i−1行有关,至于 i − 1 i-1 i−1行之前的数据第 i i i行无需关注,因此在DP过程中实际上只有两行在进行工作,故可极大程度优化空间复杂度。
注意,滚动数组使中间信息丢失,若需要输出背包具体方案,则不能采用滚动数组。
交替滚动
思路:定义 d p [ 2 ] [ v ] dp[2][v] dp[2][v],当前工作指针 w o r k work work和上次工作指针 o l d old old,使用 d p [ w o r k ] [ v ] dp[work][v] dp[work][v]和 d p [ o l d ] [ v ] dp[old][v] dp[old][v]进行交替滚动,每次滚动后交换工作指针即可,思路简单
int dp[2][v];
void dp(){int work=0,old=1;for(int i=1;i<=n;i++){swap(work,old);//交换工作指针而非交换数组元素for(int j=1;j<=v;j++)if(c[i]<=j) dp[work][j]=max(dp[old][j],dp[old][j-c[i]]+w[i]);else dp[work][j]=dp[old][j];}
}
自我滚动
思路:由状态转移方程式可知,当前元素只继承自上一行正上方( d p [ i − 1 ] [ j ] dp[i-1][j] dp[i−1][j])或上一行左上方( d p [ i − 1 ] [ j − 1 ] dp[i-1][j-1] dp[i−1][j−1]),因此逆序遍历背包容量进行更新,可将数组压至一维。
必须对背包进行逆序更新,这样是为了满足0/1背包每种物品只能选1个的性质,若顺序遍历则可能会对1种物品选多次,此时则为完全背包,且此错误必然会在选第1种物品时就发生。
自我滚动的0/1背包只可先遍历物品再遍历背包,不可颠倒(完全背包可颠倒)。
int dp[v];
void dp(){for(int i=1;i<=n;i++){//顺序遍历物品for(int j=v;j>=c[i];j--)//逆序遍历背包,装不下的不用管dp[j]=max(dp[j],dp[j-c[i]]+w[i]);}
}
输出具体方案
思路:定义标记数组,从 d p dp dp终点开始步步向上回溯,根据0/1背包状态转移方程式 p [ i ] [ j ] = m a x ( d p [ i − 1 ] [ j ] , d p [ i − 1 ] [ j − c [ i ] ] + w [ i ] ) p[i][j]=max(dp[i-1][j],dp[i-1][j-c[i]]+w[i]) p[i][j]=max(dp[i−1][j],dp[i−1][j−c[i]]+w[i])可知,判断 d p [ i ] [ j ] dp[i][j] dp[i][j]与 d p [ i − 1 ] [ j ] dp[i-1][j] dp[i−1][j]和 d p [ i − 1 ] [ j − c [ i ] ] + w [ i ] dp[i-1][j-c[i]]+w[i] dp[i−1][j−c[i]]+w[i]关系即可判断第 i i i个物品是否已装,最后输出标记数组。
注:求解具体方案仅适用于非滚动数组,因为滚动过程会将中间状态信息丢失。
extern int dp[MAX][MAX],i,j;//i,j:dp终点
bool f[MAX];
void print(){for(;i>=1;i--){if(j>=c[i]&&dp[i][j]==dp[i-1][j-c[i]+w[i]]){//说明第i个物品已选f[i]=1;j-=c[i];}}for(int k=1;k<=n;k++) if(f[k]) cout<<k<<' ';
}
相关文章:

0/1背包
0/1背包 背包问题是DP最经典的类型之一,而0/1背包是最经典最基础的背包问题。 背包体积为 V V V, n n n种物品,每种物品只有1个,第 i i i种物品对应体积为 c i c_i ci,价值为 w i w_i wi,怎样装填能使…...
Linux的进程和权限的基本命令
目录 基本命令 man find date cal du ln exit grep 基本命令-帮助查询: wc cat more less head tail echo alias unalias 基本命令-进程管理: ps kill top 操作系统负载查看 用户分类: 程序用户 普通用户&#x…...

鼠标录制工具怎么挑选?9款电脑鼠标录制工具分享(2024)
你知道鼠标录制工具吗?鼠标录制工具通过记录和回放用户的操作,帮助自动化重复性任务,提高工作效率和精确性。它可以帮助用户简化很多繁琐的操作步骤,非常适合运用在电脑自动化任务、游戏自动化中,给大家整理了2024年9款…...

C1W4.LAB.Vector manipulation+Hash functions and multiplanes
理论课:C1W4.Machine Translation and Document Search 文章目录 Python 中的矢量操作Transforming vectorsExample 1Example 2 Frobenius Norm Hash functions and multiplanesBasic Hash tablesPlanesHash Function with multiple planesRandom PlanesDocument v…...

YOLOv8改进 | 检测头 | 融合渐进特征金字塔的检测头【AFPN4】
秋招面试专栏推荐 :深度学习算法工程师面试问题总结【百面算法工程师】——点击即可跳转 💡💡💡本专栏所有程序均经过测试,可成功执行💡💡💡 专栏目录 :《YOLOv8改进有效…...

数据采集监控平台:挖掘数据价值 高效高速生产!
在当今数字化的时代,数据已成为企业非常宝贵的资产之一。然而,要充分发挥数据的潜力,离不开一个强大的数据采集监控平台,尤其是生产制造行业。它不仅是数据的收集者,更是洞察生产的智慧之眼,高效高速处理产…...

【算法笔记自学】第 9 章 提高篇(3)——数据结构专题(2)
9.1树与二叉树 #include <cstdio>int main() {int n, m;scanf("%d%d", &n, &m);printf(n m 1 ? "Yes" : "No");return 0; } 9.2二叉树的遍历 #include <cstdio> #include <vector> using namespace std;const int…...
Objective-C 中字符串的保存位置
在 Objective-C 中,字符串常量和动态创建的字符串(例如通过 stringWithFormat:、initWithString: 等方法创建的字符串)在内存中保存的位置一样么 ? 在 Objective-C 中,字符串常量和动态创建的字符串在内存中的保存位置…...
git 想要创建一个新的本地分支并检出远程分支的内容
如果你想要创建一个新的本地分支并检出远程分支的内容: git checkout -b feature-branch origin/feature-branch feature-branch 是你在本地创建的新分支名,origin/feature-branch 是远程分支的引用。 根据你检出的远程分支的名字而定 不知道名称的时…...

C语言学习笔记[24]:循环语句while②
getchar()的使用场景 int main() {char password[20] {0};printf("请输入密码:");//输入 123456 后回车scanf("%s", passwoed);//数组名本身就是数组地址printf("请确认密码:Y/N");int ch getchar();if(Y ch)printf(&…...
安全运营概述
安全运营概述 概述安全运营的工作对内安全运营工作对外安全运营工作品牌建设 概述 安全是一个过程,安全是靠运营出来的,公司会不断的有新业务的变更,新产品的发布,新版本的升级,技术架构的升级,底层系统的…...
spring-cloud和spring-cloud-alibaba的关系
首先Spring Cloud 是什么? Spring Cloud是一系列框架的有序集合,它利用Spring Boot的开发便利性巧妙地简化了分布式系统基础设施的开发。Spring Cloud提供了微服务架构开发所需的多种组件和工具,如服务发现注册、配置中心、消息总线、负载均…...

持续集成06--Jenkins构建触发器
前言 在持续集成(CI)的实践中,构建触发器是自动化流程中不可或缺的一环。它决定了何时启动构建过程,从而确保代码变更能够及时地得到验证和反馈。Jenkins,作为业界领先的CI/CD工具,提供了多种构建触发器选项…...

根据视图矩阵, 恢复相机的世界空间的位置
根据视图矩阵, 恢复相机的世界空间的位置 一、方法1 glsl 实现: // 从本地局部坐标系(相机空间) 到 世界空间的旋转变换 mat3 getLocal2WorldRotation() {mat3 world2localRotation mat3(viewMatrix[0].xyz,viewMatrix[1].xyz,viewMatrix[2].xyz);return inverse(world2loca…...
使用pytest-playwright截图和录制视频并添加到Allure报告
一、依赖环境 python, version==3.9.5 pytest-playwright, version==0.5.1 allure-pytest, version==2.13.5 pytest, version==6.2.5 allure, version==2.22.0pytest-playwright支持如下命令行参数: Playwright:--browser={chromium,firefox,webkit}Browser engine which …...
pytorch GPU cuda 使用 报错 整理
GPU 使用、报错整理 1. 使用指定GPU(单卡)1.1 方法1:os.environ[CUDA_VISIBLE_DEVICES]1.2 方法2:torch.device(cuda:2)1.3 报错1:RuntimeError: CUDA error: invalid device ordinal CUDA kernel errors might be asy…...
python + Pytest + requests 的接口自动化步骤
pythonpytestrequestallureyaml接口自动化测试项目实战 开发环境准备 1. jdk 下载 Java官网下载地址:http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html 安装: https://blog.csdn.net/VA_AV/article/details/138…...

基于若依的ruoyi-nbcio流程管理系统修正自定义业务表单的回写bug
更多ruoyi-nbcio功能请看演示系统 gitee源代码地址 前后端代码: https://gitee.com/nbacheng/ruoyi-nbcio 演示地址:RuoYi-Nbcio后台管理系统 http://218.75.87.38:9666/ 更多nbcio-boot功能请看演示系统 gitee源代码地址 后端代码: h…...

GD32 MCU上电跌落导致启动异常如何解决
大家是否碰到过MCU上电过程中存在电源波动或者电压跌落导致MCU启动异常的问题?本视频将会为大家讲解可能的原因以及解决方法: GD32 MCU上下电复位波形如下图所示,上电过程中如果存在吃电的模块,比如wifi模块/4G模块/开启某块电路…...

安防视频监控/视频汇聚EasyCVR平台浏览器http可以播放,https不能播放,如何解决?
安防视频监控/视频集中存储/云存储/磁盘阵列EasyCVR平台基于云边端一体化架构,兼容性强、支持多协议接入,包括国标GB/T 28181协议、部标JT808、GA/T 1400协议、RTMP、RTSP/Onvif协议、海康Ehome、海康SDK、大华SDK、华为SDK、宇视SDK、乐橙SDK、萤石云SD…...
SkyWalking 10.2.0 SWCK 配置过程
SkyWalking 10.2.0 & SWCK 配置过程 skywalking oap-server & ui 使用Docker安装在K8S集群以外,K8S集群中的微服务使用initContainer按命名空间将skywalking-java-agent注入到业务容器中。 SWCK有整套的解决方案,全安装在K8S群集中。 具体可参…...
脑机新手指南(八):OpenBCI_GUI:从环境搭建到数据可视化(下)
一、数据处理与分析实战 (一)实时滤波与参数调整 基础滤波操作 60Hz 工频滤波:勾选界面右侧 “60Hz” 复选框,可有效抑制电网干扰(适用于北美地区,欧洲用户可调整为 50Hz)。 平滑处理&…...

视频字幕质量评估的大规模细粒度基准
大家读完觉得有帮助记得关注和点赞!!! 摘要 视频字幕在文本到视频生成任务中起着至关重要的作用,因为它们的质量直接影响所生成视频的语义连贯性和视觉保真度。尽管大型视觉-语言模型(VLMs)在字幕生成方面…...
鱼香ros docker配置镜像报错:https://registry-1.docker.io/v2/
使用鱼香ros一件安装docker时的https://registry-1.docker.io/v2/问题 一键安装指令 wget http://fishros.com/install -O fishros && . fishros出现问题:docker pull 失败 网络不同,需要使用镜像源 按照如下步骤操作 sudo vi /etc/docker/dae…...

yaml读取写入常见错误 (‘cannot represent an object‘, 117)
错误一:yaml.representer.RepresenterError: (‘cannot represent an object’, 117) 出现这个问题一直没找到原因,后面把yaml.safe_dump直接替换成yaml.dump,确实能保存,但出现乱码: 放弃yaml.dump,又切…...
【把数组变成一棵树】有序数组秒变平衡BST,原来可以这么优雅!
【把数组变成一棵树】有序数组秒变平衡BST,原来可以这么优雅! 🌱 前言:一棵树的浪漫,从数组开始说起 程序员的世界里,数组是最常见的基本结构之一,几乎每种语言、每种算法都少不了它。可你有没有想过,一组看似“线性排列”的有序数组,竟然可以**“长”成一棵平衡的二…...

门静脉高压——表现
一、门静脉高压表现 00:01 1. 门静脉构成 00:13 组成结构:由肠系膜上静脉和脾静脉汇合构成,是肝脏血液供应的主要来源。淤血后果:门静脉淤血会同时导致脾静脉和肠系膜上静脉淤血,引发后续系列症状。 2. 脾大和脾功能亢进 00:46 …...

react菜单,动态绑定点击事件,菜单分离出去单独的js文件,Ant框架
1、菜单文件treeTop.js // 顶部菜单 import { AppstoreOutlined, SettingOutlined } from ant-design/icons; // 定义菜单项数据 const treeTop [{label: Docker管理,key: 1,icon: <AppstoreOutlined />,url:"/docker/index"},{label: 权限管理,key: 2,icon:…...
python读取SQLite表个并生成pdf文件
代码用于创建含50列的SQLite数据库并插入500行随机浮点数据,随后读取数据,通过ReportLab生成横向PDF表格,包含格式化(两位小数)及表头、网格线等美观样式。 # 导入所需库 import sqlite3 # 用于操作…...
【Redis】Redis从入门到实战:全面指南
Redis从入门到实战:全面指南 一、Redis简介 Redis(Remote Dictionary Server)是一个开源的、基于内存的键值存储系统,它可以用作数据库、缓存和消息代理。由Salvatore Sanfilippo于2009年开发,因其高性能、丰富的数据结构和广泛的语言支持而广受欢迎。 Redis核心特点:…...