复现GMM文章(一):图1代码和数据
介绍
复现GMM文章的的Fig1图。
加载R包
library(tidyr)library(tidyverse)library(dplyr)library(ggsci)library(ggpubr)
导入数据
所有的数据可以通过下列链接下载:
百度网盘链接: https://pan.baidu.com/s/1isKEK1G5I6X90KYqLufmWw
提取码: t9ca
图1B
- 数据
load("01_data/plot_data/F1B.RData")head(temp)
- 画图
temp %>%mutate(type=factor(type, levels=c("Intestinal" ,"Metabolic" , "Mental" , "Autoimmune", "Liver"))) %>%arrange(desc(count)) %>% mutate(disease=factor(disease, levels=unique(disease))) %>%ggplot(aes(x=disease, y=count,group=data_type)) +geom_bar(stat="identity",position='stack', aes(fill=data_type)) +geom_text(aes(label=count),position=position_stack(vjust = 0.5),size=7)+facet_grid(~type, scales="free", space="free") +theme_classic() +theme(axis.text.x=element_text(angle=45, hjust=1,face = 'bold',size=12),axis.text.y=element_text(face = 'bold',size=12),plot.title=element_text(hjust=0.5)) +ylab("No. of project") +xlab('disease') +coord_cartesian(ylim=c(0,11),expand=FALSE) +scale_y_continuous(breaks=seq(0, 12, 2))+theme(panel.border = element_blank(), axis.line = element_line())+scale_fill_d3(alpha = 0.5)+theme(text = element_text(size=16,face = 'plain',family ='',colour = 'black'))
图1C
- 数据
load("01_data/plot_data/F1C.RData")head(project_stat0)project_stat0 <- gather(project_stat0,phenotype,num,c('case','control'))
project_stat0$phenotype <- factor(project_stat0$phenotype,levels = c('control','case'))
- 画图
ggdensity(project_stat0, 'num', color="phenotype",palette = "aaas",add = "median",alpha = 0.1,size=1,fill ="phenotype",rug = TRUE)+labs(x = 'No. of samples in each cohort',y='Density')+annotate("text", label = paste0("Median: ",median(subset(project_stat0,phenotype=='case')$num)), x = 150, y = 0.015, size = 4, colour = pal_aaas("default", alpha = 0.6)(10)[2])+annotate("text", label = paste0("Median: ",median(subset(project_stat0,phenotype=='control')$num)), x = 150, y = 0.013, size = 4, colour = pal_aaas("default", alpha = 0.6)(10)[1])
图1D
- 数据
load('01_data/plot_data/F1D.RData')head(auc_self)stat.test <- compare_means(auc~group1,data = auc_self, # group.by = "level",method = "wilcox.test") %>% mutate(y.position = seq(from=1.05, to=1.65,length.out=10))
x <- stat.test$p.adj
stat.test$p.adj.signif <- ifelse(x<0.05, ifelse(x<0.01, ifelse(x<0.001, ifelse(x<=0.0001, '****','***'),'**'),'*'),'ns')
- 画图
ggboxplot(auc_self, x = "group1", y = "auc", fill = "group1",palette = "jco",width = 0.2)+ geom_hline(yintercept =0.5,color='#dbdcdc')+geom_hline(yintercept =0.6,color='#ffd09a')+geom_hline(yintercept =0.7,color='#ffcbd8')+geom_hline(yintercept =0.8,color='#7b77ff')+geom_hline(yintercept =0.9,color='#e60020')+# stat_compare_means()+ylim(0.05,1.68)+theme(legend.position="none")+ ylab("Internal AUC")+xlab('')+ggtitle('Disease category')+theme(axis.text.x=element_text(angle=20, hjust=0.8,face = 'plain',size=13),text = element_text(size=13,face = 'plain',family ='',colour = 'black')) +stat_pvalue_manual(stat.test,label = "p.adj.signif")
图1E
- 数据
load('01_data/plot_data/F1E.RData')head(self.e)stat.test <- compare_means(auc~level,data = self.e, # group.by = "level",method = "wilcox.test") %>% mutate(y.position = seq(from=1.2, to=1.65,length.out=3))
x <- stat.test$p.adj
stat.test$p.adj.signif <- ifelse(x<0.05, ifelse(x<0.01, ifelse(x<0.001, ifelse(x<=0.0001, '****','***'),'**'),'*'),'ns')
- 画图
ggboxplot(self.e, x = "level", y = "auc", fill = "level",width = 0.2,palette = c('#774ec7','#bd93cc','#a2c4b1'))+geom_hline(yintercept =0.5,color='#dbdcdc')+geom_hline(yintercept =0.6,color='#ffd09a')+geom_hline(yintercept =0.7,color='#ffcbd8')+geom_hline(yintercept =0.8,color='#7b77ff')+geom_hline(yintercept =0.9,color='#e60020')+ylim(0.05,1.68)+# stat_compare_means()+theme(legend.position="none")+ ylab("Internal AUC")+xlab('')+ggtitle('Data type')+theme(axis.text.x=element_text(angle=20, hjust=0.8,face = 'plain',size=13),text = element_text(size=13,face = 'plain',family ='',colour = 'black')) + stat_pvalue_manual(stat.test,label = "p.adj.signif")
图1F-G
- 数据
load('01_data/plot_data/F1FG.RData')head(a_all)
- 画图
ggboxplot(a_all, x = "method", y = "auc", fill = "method",palette = c('#1fb8b4','#ff7f0e'),width = 0.15)+ geom_hline(yintercept =0.5,color='#dbdcdc')+geom_hline(yintercept =0.6,color='#ffd09a')+geom_hline(yintercept =0.7,color='#ffcbd8')+geom_hline(yintercept =0.8,color='#7b77ff')+geom_hline(yintercept =0.9,color='#e60020')+facet_wrap(~group1,nrow = 1)+# annotate('text',x=1:2,y=0.15,label=c('0.765','0.638'))+ #AUCgeom_signif(comparisons =list(c('internal','external')),y_position = c(1.12, 1.32),test = 'wilcox.test',map_signif_level = function(x){ifelse(x<0.05, ifelse(x<0.01, ifelse(x<0.001, ifelse(x<=0.0001, '****','***'),'**'),'*'),'ns')})+ylim(0.05,1.32)+theme(legend.position="top")+ xlab("") + ylab("AUC")+labs(fill = "AUC type")+theme(text = element_text(size=13,face = 'plain',family ='',colour = 'black'),axis.text.x = element_blank(),axis.ticks=element_blank())
相关文章:

复现GMM文章(一):图1代码和数据
介绍 复现GMM文章的的Fig1图。 加载R包 library(tidyr)library(tidyverse)library(dplyr)library(ggsci)library(ggpubr)导入数据 所有的数据可以通过下列链接下载: 百度网盘链接: https://pan.baidu.com/s/1isKEK1G5I6X90KYqLufmWw 提取码: t9ca 图1B 数据 …...

链接追踪系列-07.logstash安装json_lines插件
进入docker中的logstash 容器内: jelexbogon ~ % docker exec -it 7ee8960c99a31e607f346b2802419b8b819cc860863bc283cb7483bc03ba1420 /bin/sh $ pwd /usr/share/logstash $ ls bin CONTRIBUTORS Gemfile jdk logstash-core modules tools x-pack …...

火山引擎数据飞轮实践:在电商场景中,如何建设全链路数据血缘?
数据作为新型生产要素,正支撑企业的数智化转型。但企业数字化建设也存在管理成本高、数据产品使用门槛高、数据资产价值不够的问题,其原因在于业务和数据之间没有形成双向良性驱动。 结合新时代企业数字化转型需求,火山引擎基于字节跳动十余…...

使用加密软件对企业来说有什么好处
泄密时间近年来层出不穷,一旦重要文件或数据被盗,无疑会对企业带来巨大的损失。 2024年3月,我国某高新科技企业遭境外黑客攻击,相关信息化系统及数据被加密锁定,生产经营活动被迫停止。企业生产经营活动受阻ÿ…...

STM32入门开发操作记录(二)——LED与蜂鸣器
目录 一、工程模板二、点亮主板1. 配置寄存器2. 调用库函数 三、LED1. 闪烁2. 流水灯 四、蜂鸣器 一、工程模板 参照第一篇,新建工程目录ProjectMould,将先前打包好的Start,Library和User文件^C^V过来,并在Keil5内完成器件支持包的…...
n3.平滑升级和回滚
平滑升级和回滚 1. 平滑升级流程2. 平滑升级和回滚案例 有时候我们需要对Nginx版本进行升级以满足对其功能的需求,例如添加新模块,需要新功能,而此时 Nginx又在跑着业务无法停掉,这时我们就可能选择平滑升级 1. 平滑升级流程 平…...
C#WPF DialogHost.Show 弹出对话框并返回数据
在WPF中,使用DialogHost.Show方法显示一个对话框并获取返回数据,你需要定义一个对话框,并在对话框关闭时返回数据。以下是一个简单的例子: 首先,在主窗口中添加DialogHost控件: <MaterialDesign:DialogHost x:Name="dialogHost" /> 然后,创建一个对话…...

Kafka Producer发送消息流程之分区器和数据收集器
文章目录 1. Partitioner分区器2. 自定义分区器3. RecordAccumulator数据收集器 1. Partitioner分区器 clients/src/main/java/org/apache/kafka/clients/producer/KafkaProducer.java,中doSend方法,记录了生产者将消息发送的流程,其中有一步…...
Codeforces Round 958 (Div. 2)
C o d e f o r c e s R o u n d 958 ( D i v . 2 ) \Huge{Codeforces Round 958 (Div. 2)} CodeforcesRound958(Div.2) 文章目录 Problems A. Split the Multiset题意思路标程 Problems B. Make Majority题意思路标程 Problems C. Increasing Sequence with Fixed OR题意思路标…...

<数据集>猫狗识别数据集<目标检测>
数据集格式:VOCYOLO格式 图片数量:3686张 标注数量(xml文件个数):3686 标注数量(txt文件个数):3686 标注类别数:2 标注类别名称:[cat, dog] 序号类别名称图片数框数1cat118811892dog24982498 使用标…...

Figma 中文版指南:获取和安装汉化插件
Figma是一种主流的在线团队合作设计工具,也是一种基于 Web 端的设计工具。在当今的设计时代,Figma 的使用满足了每个人的设计需求,不仅可以实现在线编辑,还可以方便日常管理,有效提高工作效率。然而,相信很…...
用c语言写一个贪吃蛇游戏
贪吃蛇游戏通常涉及到终端图形编程和简单的游戏逻辑。以下是一个基本的实现示例,包括贪吃蛇的移动、食物生成、碰撞检测等功能。 1. 贪吃蛇游戏的基本结构 贪吃蛇游戏可以分为以下几个部分: 游戏地图和终端绘制:使用二维数组表示游戏地图&am…...
计算机网络入门 --网络模型
计算机网络入门 --网络模型 1.OSI七层模型 1.1 模型概念 OSI七层模型是将计算机网络通信协议划分为七个不同层次的标准化框架,每一层都负责不同功能,并从物理连接层开始处理。OSI七层网络模型如下分别为:物理层、数据链路层、网络层、传输…...

陪玩系统小程序模式APP小程序H5系统搭建开发
随着移动互联网的营及和游戏行业的蓬轨发展,陪玩服务应远而生并迅速唱起,陪玩系统小程序作为连接游戏玩家与陪玩师的桥梁,其模式系统的搭建与开发是得尤为重要,本文将洋细凰述陪玩系统小程宗模式系统的搭建开发流程,包…...
算法训练营day72
题目:117. 软件构建 (kamacoder.com) #include<iostream> #include<unordered_map> #include<vector> #include<queue>using namespace std;int main() {int n, m;cin >> n >> m;vector<int> indegree(n, 0);unordered_…...

C语言------指针讲解(2)
目录 一、数组名的理解 二、使用指针访问数组 三、一维数组传参的本质 四、冒泡排序 五、二级指针 六、指针数组 七、指针数组模拟二维数组 一、数组名的理解 通过学习,我们知道:数组名和数组首元素的地址打印出来的结果一模一样,数组…...

大数据技术基础
一、大数据平台 1.大数据平台方案步骤: ①市场上有哪些大数据平台 ②硬件、系统、业务增长等方面 ③方案是否通过 通过后:按照一期目标投入 先虚拟环境部署联系,再实际部署 《大数据架构介绍》《Hadoop架构解析》《Hadoop集群规划》 《H…...

【文心智能体】前几天百度热搜有一条非常有趣的话题《00后疯感工牌》,看看如何通过低代码工作流方式实现图片显示
00后疯感工牌体验:https://mbd.baidu.com/ma/s/6yA90qtM 目录 前言比赛推荐工作流创建工作流入口创建工作流界面工作流界面HTTP工具卡点地方 总结推荐文章 前言 前几天百度热搜有一条非常有有趣《00后疯感工牌》。 想着通过文心智能体去一键生成00后疯感工牌是不是…...

C++20中的constinit说明符
constinit说明符断言(assert)变量具有静态初始化,即零初始化和常量初始化(zero initialization and constant initialization),否则程序格式不正确(program is ill-formed)。 constinit说明符声明具有静态或线程存储持续时间(thread storage duration)的…...

Java 中的正则表达式
转义字符由反斜杠\x组成,用于实现特殊功能当想取消这些特殊功能时可以在前面加上反斜杠\ 例如在Java中当\出现时是转义字符的一部分,具有特殊意义,前面加一个反斜可以取消其特殊意义,表示1个普通的反斜杠\,\\\\表示2个…...

【JavaEE】-- HTTP
1. HTTP是什么? HTTP(全称为"超文本传输协议")是一种应用非常广泛的应用层协议,HTTP是基于TCP协议的一种应用层协议。 应用层协议:是计算机网络协议栈中最高层的协议,它定义了运行在不同主机上…...
【HarmonyOS 5 开发速记】如何获取用户信息(头像/昵称/手机号)
1.获取 authorizationCode: 2.利用 authorizationCode 获取 accessToken:文档中心 3.获取手机:文档中心 4.获取昵称头像:文档中心 首先创建 request 若要获取手机号,scope必填 phone,permissions 必填 …...
是否存在路径(FIFOBB算法)
题目描述 一个具有 n 个顶点e条边的无向图,该图顶点的编号依次为0到n-1且不存在顶点与自身相连的边。请使用FIFOBB算法编写程序,确定是否存在从顶点 source到顶点 destination的路径。 输入 第一行两个整数,分别表示n 和 e 的值(1…...
Bean 作用域有哪些?如何答出技术深度?
导语: Spring 面试绕不开 Bean 的作用域问题,这是面试官考察候选人对 Spring 框架理解深度的常见方式。本文将围绕“Spring 中的 Bean 作用域”展开,结合典型面试题及实战场景,帮你厘清重点,打破模板式回答,…...

Linux部署私有文件管理系统MinIO
最近需要用到一个文件管理服务,但是又不想花钱,所以就想着自己搭建一个,刚好我们用的一个开源框架已经集成了MinIO,所以就选了这个 我这边对文件服务性能要求不是太高,单机版就可以 安装非常简单,几个命令就…...

Spring AOP代理对象生成原理
代理对象生成的关键类是【AnnotationAwareAspectJAutoProxyCreator】,这个类继承了【BeanPostProcessor】是一个后置处理器 在bean对象生命周期中初始化时执行【org.springframework.beans.factory.config.BeanPostProcessor#postProcessAfterInitialization】方法时…...
2025.6.9总结(利与弊)
凡事都有两面性。在大厂上班也不例外。今天找开发定位问题,从一个接口人不断溯源到另一个 接口人。有时候,不知道是谁的责任填。将工作内容分的很细,每个人负责其中的一小块。我清楚的意识到,自己就是个可以随时替换的螺丝钉&…...
验证redis数据结构
一、功能验证 1.验证redis的数据结构(如字符串、列表、哈希、集合、有序集合等)是否按照预期工作。 2、常见的数据结构验证方法: ①字符串(string) 测试基本操作 set、get、incr、decr 验证字符串的长度和内容是否正…...
StarRocks 全面向量化执行引擎深度解析
StarRocks 全面向量化执行引擎深度解析 StarRocks 的向量化执行引擎是其高性能的核心设计,相比传统行式处理引擎(如MySQL),性能可提升 5-10倍。以下是分层拆解: 1. 向量化 vs 传统行式处理 维度行式处理向量化处理数…...

【技巧】dify前端源代码修改第一弹-增加tab页
回到目录 【技巧】dify前端源代码修改第一弹-增加tab页 尝试修改dify的前端源代码,在知识库增加一个tab页"HELLO WORLD",完成后的效果如下 [gif01] 1. 前端代码进入调试模式 参考 【部署】win10的wsl环境下启动dify的web前端服务 启动调试…...