pytorch中一些最基本函数和类
1.Tensor操作
Tensor是PyTorch中最基本的数据结构,类似于NumPy的数组,但可以在GPU上运行加速计算。
示例:创建和操作Tensor
import torch# 创建一个零填充的Tensor
x = torch.zeros(3, 3)
print(x)# 加法操作
y = torch.ones(3, 3)
z = x + y
print(z)# 在GPU上创建Tensor
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
x = torch.zeros(3, 3, device=device)
print(x)
运行结果:
2. nn.Module和自定义模型
nn.Module是PyTorch中定义神经网络模型的基类,所有的自定义模型都应该继承自它。
示例:定义一个简单的全连接神经网络模型
import torch
import torch.nn as nn# 自定义模型类
class SimpleNet(nn.Module):def __init__(self):super(SimpleNet, self).__init__()self.fc = nn.Linear(10, 5) # 线性层:输入维度为10,输出维度为5def forward(self, x):x = self.fc(x)return x# 创建模型实例
model = SimpleNet()
print(model)
运行结果:

3. DataLoader和Dataset
DataLoader用于批量加载数据,Dataset定义了数据集的接口,自定义数据集需继承自它。
示例:加载自定义数据集
import torch
from torch.utils.data import Dataset, DataLoader# 自定义数据集类
class CustomDataset(Dataset):def __init__(self, data, targets):self.data = dataself.targets = targetsdef __len__(self):return len(self.data)def __getitem__(self, index):x = self.data[index]y = self.targets[index]return x, y# 假设有一些数据和标签
data = torch.randn(100, 10) # 100个样本,每个样本10维
targets = torch.randint(0, 2, (100,)) # 100个随机标签,0或1# 创建数据集实例
dataset = CustomDataset(data, targets)# 创建数据加载器
batch_size = 10
dataloader = DataLoader(dataset, batch_size=batch_size, shuffle=True)# 打印一个batch的数据
for batch in dataloader:inputs, labels = batchprint(inputs.shape, labels.shape)break
运行结果:

4. 优化器和损失函数
优化器用于更新模型参数以减少损失,损失函数用于计算预测值与实际值之间的差异。
示例:使用优化器和损失函数
import torch
import torch.nn as nn
import torch.optim as optim# 定义模型(假设已定义好)
model = SimpleNet()# 定义损失函数
criterion = nn.CrossEntropyLoss()# 定义优化器
optimizer = optim.Adam(model.parameters(), lr=0.001)# 前向传播、损失计算、反向传播和优化过程请参考前面完整示例的训练循环部分。
运行结果:
5. nn.functional中的函数
nn.functional提供了各种用于构建神经网络的函数,如激活函数、池化操作等。
示例:使用ReLU激活函数
import torch
import torch.nn.functional as F# 创建一个Tensor
x = torch.randn(3, 3)# 使用ReLU激活函数
output = F.relu(x)
print(output)
运行结果:

相关文章:
pytorch中一些最基本函数和类
1.Tensor操作 Tensor是PyTorch中最基本的数据结构,类似于NumPy的数组,但可以在GPU上运行加速计算。 示例:创建和操作Tensor import torch# 创建一个零填充的Tensor x torch.zeros(3, 3) print(x)# 加法操作 y torch.ones(3, 3) z x y pr…...
排序——归并排序及排序章节总结
前面的文章中 我们详细介绍了排序的概念,插入排序,交换排序与选择排序,大家可以通过下面的链接再去学习: 排序的概念及插入排序 交换排序 选择排序 这篇文章就详细介绍一下另一种排序算法:归并排序以及…...
python的readline()和readlines()
readlines() readlines() 是 Python 中用于从文件对象中读取所有行的方法。它会一次性读取整个文件内容,并将每一行作为一个字符串存储在一个列表中返回。 使用方法和返回值 使用 readlines() 方法可以读取文件的所有内容,每一行作为列表中的一个元素…...
【ARM】使用JasperGold和Cadence IFV科普
#工作记录# 原本希望使用CCI自带的验证脚本来验证修改过后的address map decoder,但是发现需要使用JasperGold或者Cadence家的IFV的工具,我们公司没有,只能搜搜资料做一下科普了解,希望以后能用到吧。这个虽然跟ARM没啥关系不过在…...
深入探讨极限编程(XP):技术实践与频繁发布的艺术
目录 前言1. 极限编程的核心原则1.1 沟通1.2 简单1.3 反馈1.4 勇气1.5 尊重 2. 关键实践2.1 结对编程2.1.1 提高代码质量2.1.2 促进知识共享2.1.3 增强团队协作 2.2 测试驱动开发(TDD)2.2.1 提升代码可靠性2.2.2 提高代码可维护性2.2.3 鼓励良好设计 2.3…...
【代码随想录_Day30】1049. 最后一块石头的重量 II 494. 目标和 474.一和零
Day30 OK,今日份的打卡!第三十天 以下是今日份的总结最后一块石头的重量 II目标和一和零 以下是今日份的总结 1049 最后一块石头的重量 II 494 目标和 474 一和零 今天的题目难度不低,掌握技巧了就会很简单,尽量还是写一些简洁代…...
【时时三省】tessy 集成测试:小白入门指导手册
目录 1,创建集成测试模块且分析源文件 2,设置测试环境 3,TIE界面设置相关函数 4,SCE界面增加用例 5,编辑数据 6,用例所对应的测试函数序列 7,添加 work task 函数 8,为测试场景添加函数 9,为函数赋值 10,编辑时间序列的数值 11,执行用例 12,其他注意事项…...
通过vagrant与VirtualBox 创建虚拟机
1.下载vagrant与VirtualBox【windows版本案例】 1.1 vagrant 下载地址 【按需下载】 https://developer.hashicorp.com/vagrant/install?product_intentvagranthttps://developer.hashicorp.com/vagrant/install?product_intentvagrant 1.2 VirtualBox 下载地址 【按需下载…...
第13章 更多的结构化命令《Linux命令行与Shell脚本编程大全笔记》
13.1 For命令 格式:for var in list;dofor命令默认按照空格、制表符、换行符作为字段分隔符区分单个值,如果某个值含有空格要使用双引号从命令中读取值列表for state in $(cat $file)更改字段分隔符IFS(internal field separator)IFS$\n可能的需求&…...
【计算机网络】学习指南及导论
个人主页:【😊个人主页】 系列专栏:【❤️计算机网络】 文章目录 前言我们为什么要学计算机网络?计算机网络概述计算机网络的分类按交换技术分类按使用者分类按传输介质分类按覆盖网络分类按覆盖网络分类 局域网的连接方式有线连接…...
安装mitmproxy失败
安装mitmproxy失败记录 问题记录 问题记录 安装mitmproxy时,发现一直报错 这里的报错是因为我缺少了编译的环境 我是win7 的系统,缺少C的环境,所以我安装的时候源码包无法编译。 单独安装了这个包,依旧是失败的。 1.尝试用以下命…...
安装adb和常用命令
下载ADB安装包 https://dl.google.com/android/repository/platform-tools-latest-windows.zip 解压安装包 解压如上下载的安装包,然后复制adb.exe所在的文件地址 配置环境变量 我的电脑——>右键属性——>高级系统设置——>环境变量——>系统变量—…...
C++ 几何计算库
代码 #include <iostream> #include <list> #include <CGAL/Simple_cartesian.h> #include <CGAL/AABB_tree.h> #include <CGAL/AABB_traits.h> #include <CGAL/AABB_segment_primitive.h> #include <CGAL/Polygon_2.h>typedef CGAL…...
云动态摘要 2024-07-16
给您带来云厂商的最新动态,最新产品资讯和最新优惠更新。 最新优惠与活动 数据库上云优选 阿里云 2024-07-04 RDS、PolarDB、Redis、MongoDB 全系产品新用户低至首年6折起! [免费体验]智能助手ChatBI上线 腾讯云 2024-07-02 基于混元大模型打造&…...
数仓工具—Hive基础之临时表及示例
Hive基础之临时表及示例 临时表是应用程序自动管理在大型或复杂查询执行期间生成的中间数据的一种便捷方式。Hive 0.14 及更高版本支持临时表。可以在用户会话中像使用普通表一样多次使用它们。在本文中,我们将介绍 Apache Hive 临时表,以及如何创建和使用限制的示例。 Hiv…...
机体坐标系和导航坐标系
目录 机体坐标系(Body Frame)例子:无人机的机体坐标系 导航坐标系(Navigation Frame)例子:地球固定的导航坐标系 具体例子说明机体坐标系描述导航坐标系描述 总结 机体坐标系(Body Frame&#x…...
软件测试——web单功能测试
工作职责: 1.负责产品系统测试,包括功能测试、性能测试、稳定性测试、用户场景测试、可靠性测试等。 2.负责测试相关文档的编写,包括测试计划、测试用例、测试报告等。 3.负责自动化测试框架、用例的维护。 岗位要求: 1.熟练…...
django-ckeditor富文本编辑器
一.安装django-ckeditor 1.安装 pip install django-ckeditor2.注册应用 INSTALLED_APPS [...ckeditor, ]3.配置model from ckeditor.fields import RichTextFieldcontent RichTextField()4.在项目中manage.py文件下重新执行迁移,生成迁移文件 py…...
鸿蒙模拟器(HarmonyOS Emulator)Beta申请审核流程
文 | Promise Sun 一.背景: 鸿蒙项目开发需要使用模拟器进行开发测试,但目前想在DevEco Studio开发工具中使用模拟器就必须到华为官网进行报名申请,参加“鸿蒙模拟器(HarmonyOS Emulator)Beta活动申请”。 申请审核通…...
VUE:跨域配置代理服务器
//在vite.config。js中,同插件配置同级进行配置server:{proxy:{"/myrequest":{//代理域名,可自行修改target:"https://m.wzj.com/",//访问服务器的目标域名changeOrigin:true,//允许跨域configure:(proxy,options) > {proxy.on(&…...
基于算法竞赛的c++编程(28)结构体的进阶应用
结构体的嵌套与复杂数据组织 在C中,结构体可以嵌套使用,形成更复杂的数据结构。例如,可以通过嵌套结构体描述多层级数据关系: struct Address {string city;string street;int zipCode; };struct Employee {string name;int id;…...
[特殊字符] 智能合约中的数据是如何在区块链中保持一致的?
🧠 智能合约中的数据是如何在区块链中保持一致的? 为什么所有区块链节点都能得出相同结果?合约调用这么复杂,状态真能保持一致吗?本篇带你从底层视角理解“状态一致性”的真相。 一、智能合约的数据存储在哪里…...
conda相比python好处
Conda 作为 Python 的环境和包管理工具,相比原生 Python 生态(如 pip 虚拟环境)有许多独特优势,尤其在多项目管理、依赖处理和跨平台兼容性等方面表现更优。以下是 Conda 的核心好处: 一、一站式环境管理:…...
应用升级/灾备测试时使用guarantee 闪回点迅速回退
1.场景 应用要升级,当升级失败时,数据库回退到升级前. 要测试系统,测试完成后,数据库要回退到测试前。 相对于RMAN恢复需要很长时间, 数据库闪回只需要几分钟。 2.技术实现 数据库设置 2个db_recovery参数 创建guarantee闪回点,不需要开启数据库闪回。…...
Oracle查询表空间大小
1 查询数据库中所有的表空间以及表空间所占空间的大小 SELECTtablespace_name,sum( bytes ) / 1024 / 1024 FROMdba_data_files GROUP BYtablespace_name; 2 Oracle查询表空间大小及每个表所占空间的大小 SELECTtablespace_name,file_id,file_name,round( bytes / ( 1024 …...
SCAU期末笔记 - 数据分析与数据挖掘题库解析
这门怎么题库答案不全啊日 来简单学一下子来 一、选择题(可多选) 将原始数据进行集成、变换、维度规约、数值规约是在以下哪个步骤的任务?(C) A. 频繁模式挖掘 B.分类和预测 C.数据预处理 D.数据流挖掘 A. 频繁模式挖掘:专注于发现数据中…...
《用户共鸣指数(E)驱动品牌大模型种草:如何抢占大模型搜索结果情感高地》
在注意力分散、内容高度同质化的时代,情感连接已成为品牌破圈的关键通道。我们在服务大量品牌客户的过程中发现,消费者对内容的“有感”程度,正日益成为影响品牌传播效率与转化率的核心变量。在生成式AI驱动的内容生成与推荐环境中࿰…...
云原生玩法三问:构建自定义开发环境
云原生玩法三问:构建自定义开发环境 引言 临时运维一个古董项目,无文档,无环境,无交接人,俗称三无。 运行设备的环境老,本地环境版本高,ssh不过去。正好最近对 腾讯出品的云原生 cnb 感兴趣&…...
Spring是如何解决Bean的循环依赖:三级缓存机制
1、什么是 Bean 的循环依赖 在 Spring框架中,Bean 的循环依赖是指多个 Bean 之间互相持有对方引用,形成闭环依赖关系的现象。 多个 Bean 的依赖关系构成环形链路,例如: 双向依赖:Bean A 依赖 Bean B,同时 Bean B 也依赖 Bean A(A↔B)。链条循环: Bean A → Bean…...
免费PDF转图片工具
免费PDF转图片工具 一款简单易用的PDF转图片工具,可以将PDF文件快速转换为高质量PNG图片。无需安装复杂的软件,也不需要在线上传文件,保护您的隐私。 工具截图 主要特点 🚀 快速转换:本地转换,无需等待上…...
