AI算法19-偏最小二乘法回归算法Partial Least Squares Regression | PLS
偏最小二乘法回归算法简介
算法概述
偏最小二乘法模型可分为偏最小二乘回归模型和偏最小二乘路径模型。其中偏最小二乘回归模型是一种新型的多元统计方法,它集中了主成分分析、典型相关分析和线性回归的特点,特别在解决回归中的共线性问题具有无可比拟的优势。偏最小二乘回归模型虽然与主成分分析有关系,但它不是寻找响应和独立变量之间最小方差的超平面,而是通过投影预测变量和观测变量到一个新空间来寻找一个线性回归模型。特别当两组变量的个数很多,且存在多重相关性,而观测数据的数量较少时,用偏最小二乘回归建立的模型具有传统的经典回归分析等方法所没有的优点。
偏最小二乘路径模型是偏最小二乘法的应用,可以应用于一些难以直接观测的现象进行分析,也可以考察分析现象之间的关联关系等。偏最小二乘路径模型降低了结构方程需要大量的样本数据,且观测变量服从多元正态分布的要求。模型的工作目标与结构方程模型基本一致,但与结构方程基本协方差矩阵建模的思路不同,偏最小二乘路径模型采用的是一系列一元或多元线性回归的迭代求解。在实际应用中无需对观测变量做特定的概率分布假设,也不存在模型不可识别问题,并且由于采用偏最小二乘法,对样本容量的要求也非常宽松。由此可见,偏最小二乘路径模型是一种更加实用和有效的线性建模方法。
算法发展历史
1975年,在求解实际应用中发现很多的问题不能用结构方程求解,所以伍德等人提出更为简单的分析技术,即偏最小二乘路径模型。与结构方程相比,该方法使用条件更为广泛,效果更好。
1983年,瑞典统计学家Herman Wold和阿巴诺最先提出了最小二乘法,并将其应用于社会科学中;然后由赫曼的儿子Svante Wold发展这个理论。
特别是近十年来,偏最小二乘在理论、方法和应用方面都得到了迅速的发展。密西根大学的佛奈尔教授称偏最小二乘回归为第二代回归方法。
偏最小二乘法回归算法原理
现实问题中的自变量之间往往会存在大量的自相关情况,所以对这类问题使用普通的最小二乘法不能够求解;这是因为变量多重相关性会严重危害参数估计,扩大模型误差,并且破坏模型的稳定性。偏最小二乘法开辟了一种有效的技术途径,它利用对系统中的数据信息进行分解和筛选的方式,提取对因变量的解释性最强的综合变量,辨识系统中的信息与噪声,从而更好地克服变量多重相关性在系统建模中的不良作用。
第一步:对原始数据X和Y进行标准化得到X0和Y0,其中X为m维的数据,Y是p维的数据;从Y0中选择方差最大的一列作为u1,方便后面计算;因为选取方差最大就表示该列是最能反映原始数据信息的一列,即根据主成分分析的思想,我们称这列向量为第一主成分,并使X与Y之间的相关性达最大。
标准化后的矩阵:
第二步:迭代求解X与Y的变换权重(w1,c1)和综合因子(t1,u1),直到收敛;
假设X与Y提取的主成分为t1和u1,t1是自变量集的线性组合:
,u1是因变量集
的线性组合:
;为了回归分析的需求,需要满足两个要求:t1和u1各自尽可能多的提取所在变量组的变异信息;t1和u1的相关性达到最大。
计算公式:
利用第一步选择的Y中的列,求解X的变换权重因子
利用X的信息t1,求解Y的变换权重c1,并且更新因子u1的值
判断是否已找到合理的解,否则继续寻找。
其中t1和u1的估计方程为:
第三步:求X与Y的残差矩阵;
计算公式:
1.求X的载荷P1,载荷是反映X0和因子T1的直接关系:
2.求X0的残差X1,残差表示了u1不能反映X0信息的部分:
3.求Y的载荷Q1:
4.建立X因子t1与Y因子u1之间的回归模型,并用t1预测u1的信息;
5.求Y0的残差Y1,这个值表达了X与因子t1所不能预测的Y0中的信息:
第四步:利用X1与Y1,重复上述步骤,求解下一个主成分的偏最小二乘的参数。
最后得到偏最小二乘回归模型的回归方程,还应该对回归系数进行检验;一般情况下,可以通过交叉有效性检验来确定。交叉有效性检验通过求解预测误差平方和与误差平方和的比值,这个比值越小越好,一般设置的限定值为0.05,所以当该比值越小,增加新的主成分有利于提高模型的精度;反之认为增加新的成分,对减少方程的预测误差无明显的改善作用。
定义交叉有效性:
这样,在建模时每一步计算结束前,均进行交叉有效性检验,如果在第h步有
时模型已达到精度要求,可停止提取成分,若
表示第h步提取的
成分的边际贡献显著,应继续第h+1步计算。
偏最小二乘法回归算法代码实现
import numpy as npdef pls_regression(X, Y, L):"""偏最小二乘回归算法。参数:X : numpy.ndarray特征矩阵,每一行是一个样本,每一列是一个特征。Y : numpy.ndarray目标矩阵,每一行是一个样本,每一列是一个目标变量。L : int要提取的潜在变量数量。返回:T : numpy.ndarrayX的得分矩阵。U : numpy.ndarrayY的得分矩阵。P : numpy.ndarrayX的权重矩阵。Q : numpy.ndarrayY的权重矩阵。"""n, p = X.shapem, _ = Y.shapeW = np.zeros((p, L))Q = np.zeros((p, L))P = np.zeros((m, L))U = np.zeros((m, L))T = np.zeros((n, L))for i in range(L):# 计算权重向量Xtx = X.T @ XXty = X.T @ YW[:, i] = Xty / np.sqrt(Xtx @ W[:, i])# 计算得分向量T[:, i] = X @ W[:, i]# 计算Y的权重和得分Yty = Y.T @ YU[:, i] = Yty @ W[:, i] / np.linalg.norm(W[:, i])Q[:, i] = Y.T @ U[:, i]# 计算X和Y的权重P[:, i] = Xty @ U[:, i].T / np.linalg.norm(U[:, i])# 去相关X = X - T @ W[:, i].TY = Y - U[:, i] @ Q[:, i].Treturn T, U, P, Q# 示例数据
X = np.random.rand(100, 10) # 100个样本,10个特征
Y = np.random.rand(100, 1) # 100个样本,1个目标变量# 调用PLS回归函数
L = 3 # 假设我们想要3个潜在变量
T, U, P, Q = pls_regression(X, Y, L)# 使用得到的权重和得分进行预测
Y_pred = T @ P.T
偏最小二乘法回归算法优缺点
算法优点:
- 处理多重共线性:PLS能够在自变量存在严重多重相关性的条件下进行回归建模 。
- 样本量少于变量数:允许在样本点个数少于变量个数的条件下进行回归建模 。
- 包含所有自变量:在最终模型中将包含原有的所有自变量 。
- 辨识系统信息与噪声:模型更易于辨识系统信息与噪声,包括一些非随机性的噪声 。
- 易于解释的系数:每一个自变量的回归系数将更容易解释 。
- 预测性能:在提取主成分的过程中,考虑了自变量与因变量之间的关联,使得提取的主成分能同时优化因变量预测性能,因此通常在预测任务上能取得更好的结果 。
- 适用于高通量数据:适用于诸如基因组学、转录组学等高通量数据分析,在这些领域中自变量数目可能大于样本数 。
算法缺点:
- 线性假设限制:PLS回归本身是线性模型,尽管可以处理一定程度的非线性关系,但在非线性关系强烈的场景下可能不如非线性模型有效 。
- 模型选择问题:在PLS中,需要选择合适的潜在变量数量,这可能需要依赖经验和交叉验证来确定 。
- 计算复杂性:相比于简单的线性回归,PLS的计算过程更为复杂,可能需要更多的计算资源。
- 过度依赖主成分:如果主成分不能很好地代表数据的变异性,PLS模型可能无法提供准确的预测 。
- 对异常值敏感:PLS方法可能对数据中的异常值比较敏感,这可能影响模型的稳定性和预测能力 。
偏最小二乘法回归算法应用
偏最小二乘法回归算法(PLS)在多个领域有着广泛的应用,以下是一些常见的应用场景:
- 化学计量学:PLS回归特别适用于处理化学光谱数据分析,例如近红外光谱(NIR)、紫外可见光谱(UV-Vis)、拉曼光谱等。这些光谱数据通常包含大量的变量(如不同波长处的吸光度),并且各变量间可能存在高度相关性。通过PLS回归,研究者可以从复杂的光谱数据中构建预测模型,将光谱信息与样品的化学成分、物理性质或工艺参数等联系起来,实现无损、快速的定量或定性分析 。
- 金融行业:在风险管理中,PLS回归能够处理多种可能具有共线性的财务指标,帮助金融机构预测公司的信用风险、违约概率或其他金融表现指标。通过结合众多的财务报表数据,如资产负债率、流动比率、盈利能力指标等,PLS回归模型可以发现这些变量与潜在违约行为间的非线性关系,从而优化风险评估体系 。
- 生物医学研究:在基因表达数据分析中,PLS回归被用来探索基因表达谱(如RNA测序或微阵列数据)与临床表型(如疾病状态、药物反应、生存率等)之间的关联。由于基因数据通常是高维度且具有噪声,而样本数量相对较少,因此PLS回归能够减少数据维度,并在小样本情况下找到基因表达模式与疾病发展或治疗响应的重要关联 。
- 环境科学:PLS回归在环境科学中被用于分析环境污染物的监测数据,预测环境质量变化趋势。通过处理高维且可能存在多重共线性的环境监测数据,PLS回归可以帮助科学家更准确地预测和评估环境变化 。
- 社会科学:在社会科学研究中,PLS回归常用于分析复杂的社会经济数据,如消费者行为、社会态度等。由于这些数据通常包含多个相关变量,PLS回归能够提取关键因素,建立预测模型 。
- 市场营销和战略管理:PLS回归在市场营销和战略管理中被用来分析消费者满意度、品牌忠诚度等多维数据,帮助企业更好地理解市场动态和消费者需求 。
- 小样本数据分析:PLS回归特别适用于小样本数据的情况。在样本数量较少但变量较多的情况下,PLS回归能够通过提取主成分进行有效的回归分析,避免了传统回归方法在这种情况下可能出现的问题 。
- 高维数据处理:在自变量和因变量维数都很高的情况下,PLS回归通过降维技术,能够提炼出最重要的信息并构建预测模型,提高了模型的解释性和预测性能 。
- 处理多重共线性:PLS回归能够有效克服因变量和自变量之间存在的多重共线性问题,即使自变量之间高度相关,也能通过提取主成分进行有效的回归分析
相关文章:

AI算法19-偏最小二乘法回归算法Partial Least Squares Regression | PLS
偏最小二乘法回归算法简介 算法概述 偏最小二乘法模型可分为偏最小二乘回归模型和偏最小二乘路径模型。其中偏最小二乘回归模型是一种新型的多元统计方法,它集中了主成分分析、典型相关分析和线性回归的特点,特别在解决回归中的共线性问题具有无可比拟…...
live555关于RTSP协议交互流程
RTP在和h264 RTP在和h265 RTP载荷AAC live555关于RTSP协议交互流程 live555的核心数据结构值之闭环双向链表 live555 rtsp服务器实战之createNewStreamSource 概要 rtsp在交互的过程中用到很多协议:tcp,udp,rtp,rtcp,sdp等协议;该篇文章主要分析在live555中这些…...

Centos7 安装私有 Gitlab
在 CentOS 7上,下面的命令也会在系统防火墙中打开 HTTP、HTTPS 和 SSH 访问。这是一个可选步骤,如果您打算仅从本地网络访问极狐GitLab,则可以跳过它。 sudo yum install -y curl policycoreutils-python openssh-server perl sudo systemct…...

浅谈数学模型在UGC/AIGC游戏数值配置调参中的应用(AI智能体)
浅谈数学模型在UGC/AIGC游戏数值配置调参中的应用 ygluu 卢益贵 关键词:UGC、AIGC、AI智能体、大模型、数学模型、游戏数值调参、游戏策划 一、前言 在策划大大群提出《游戏工厂:AI(AIGC/ChatGPT)与流程式游戏开发》讨论之后就…...

第T5周:使用TensorFlow实现运动鞋品牌识别
🍨 本文为🔗365天深度学习训练营 中的学习记录博客🍖 原作者:K同学啊 文章目录 一、前期工作1.设置GPU(如果使用的是CPU可以忽略这步)2. 导入数据3. 查看数据 二、数据预处理1、加载数据2、数据可视化3、再…...

网络编程学习之tcp
按下*(星号)可以搜索当前光标下的单词。 Tcp编程的过程 打开网络设备 Bind:给服务地址把ip号和端口号连接进去 Tcp是有状态的 Listen是进入监听状态,看有没有客户端来连接服务器 Tcp比udp消耗过多资源 Upd类似于半双工&#…...
前端XMLHttpRequest、Fetch API、Axios实现文件上传、下载方法及后端Spring文件服务器处理方法
前言 本文总结Web应用开发中文件上传、下载的方法,即从前端表单输入文件并封装表单数据,然后请求后端服务器的处理过程;从基础的JavaScript中XmlHttpRequest对象、Fetch API实现上传、下载进行说明,并给出了前端常用的axios库的请…...

STM32智能交通监测系统教程
目录 引言环境准备智能交通监测系统基础代码实现:实现智能交通监测系统 4.1 数据采集模块 4.2 数据处理与控制模块 4.3 通信与网络系统实现 4.4 用户界面与数据可视化应用场景:交通监测与管理问题解决方案与优化收尾与总结 1. 引言 智能交通监测系统通…...
【利用Selenium+autoIt实现文件上传】
利用Selenium+autoIt实现文件上传 利用Selenium+autoIT实现文件上传autoIt脚本制作转换成exe文件java代码运行部分利用Selenium+autoIT实现文件上传 当你看到这篇文章时,证明你遇到了和我一样的难题。正常情况下我们利用selenium完全可以实现表单的提交和文件上传等操作。但当…...
python join
1、join函数 *.join(seq) 以*作为分隔符,将seq所有的元素合并为一个新的字符串 seq ABDWDPO new_seq list(.joint(seq)) # ABDWDPO #[A, B, D, W, D, P, O]...
cython加速python代码
python这个语言在使用的层面上看几乎没有缺点,简单易学,语法简单,唯一的弱点就是慢, 当然了万能的python社区是给了解决方法的,那就是cython 使用Cython可以显著提升Python代码的执行效率,特别是在涉及到数…...

React@16.x(60)Redux@4.x(9)- 实现 applyMiddleware
目录 1,applyMiddleware 原理2,实现2.1,applyMiddleware2.1.1,compose 方法2.1.2,applyMiddleware 2.2,修改 createStore 接上篇文章:Redux中间件介绍。 1,applyMiddleware 原理 R…...

level 6 day1 Linux网络编程之网络基础
v1 网络的历史和分层 TCP 是可靠传输,IP协议是不可靠传输 网络的体系结构 网络分层的思想: OSI体系结构 两层交换机是指数据链路层的交换 三层交换是指网络层这边的交换 四层模型 蓝色的字 是由手机发给PC机,由传输层来决定应该交给哪一…...
PostgreSQL UPDATE 命令
PostgreSQL UPDATE 命令 PostgreSQL 是一种功能强大的开源对象关系型数据库管理系统(ORDBMS),它使用并扩展了SQL语言。在处理数据库时,我们经常需要更新现有的记录。在PostgreSQL中,UPDATE命令用于修改表中的现有记录…...

什么? CSS 将支持 if() 函数了?
CSS Working Group 简称 CSSWG, 在近期的会议中决定将 if() 添加到 CSS Values Module Level 5 中。 详情可见:css-meeting-bot 、[css-values] if() function 当我看到这个消息的时候,心中直呼这很逆天了,我们知道像 less 这些 css 这些预…...
function calling实现调用理杏仁api获取数据
LLM是不存在真正逻辑的且并不是知晓万事万物的(至少目前是这样)在很多更垂直的环境下LLM并不能很好的赋能。 function calling的实现使LLM可以对接真正的世界以及真正有逻辑的系统,这将很大程度上改变LLM的可用范围(当然安全问题依…...
Excel中用VBA实现Outlook发送当前工作簿
Excel中用VBA实现Outlook发送当前工作簿,首先按AltF11打开VBA编辑器,插入模块,并在工具-引用中勾选 Microseft Outlook .0 Object Library(其中为你Microseft Outlook的版本号。 Sub 发送邮件() 保存当前excel ThisWorkbook.Save让excel连接…...

从 ArcMap 迁移到 ArcGIS Pro
许多 ArcMap 用户正在因 ArcGIS Pro 所具有的现代 GIS 桌面工作流优势而向其迁移。 ArcGIS Pro 与其余 ArcGIS 平台紧密集成,使您可以更有效地共享和使用内容。 它还将 2D 和 3D 组合到一个应用程序中,使您可以在同一工程中使用多个地图和多个布局。 Arc…...

WSL2 的安装与运行 Linux 系统
前言 适用于 Linux 的 Windows 子系统 (WSL) 是 Windows 的一项功能,允许开发人员在 Windows 系统上直接安装并使用 Linux 发行版。不用进行任何修改,也无需承担传统虚拟机或双启动设置的开销。 可以将 WSL 看作也是一个虚拟机,但是它更为便…...

业务终端动态分配IP-DHCP技术、DHCP中继技术
一、为什么需要DHCP? 1、许多设备(主机、无线WiFi终端等)需要动态地址的分配; 2、人工手工配置任务繁琐、容易出错,比如:IP地址冲突; 3、网络规模扩大、复杂度提高,网络配置越来越复杂,计算机的位置变化和数量超过可分配IP地址的数量,造成IP地址变法频繁以及IP地址…...

调用支付宝接口响应40004 SYSTEM_ERROR问题排查
在对接支付宝API的时候,遇到了一些问题,记录一下排查过程。 Body:{"datadigital_fincloud_generalsaas_face_certify_initialize_response":{"msg":"Business Failed","code":"40004","sub_msg…...
多场景 OkHttpClient 管理器 - Android 网络通信解决方案
下面是一个完整的 Android 实现,展示如何创建和管理多个 OkHttpClient 实例,分别用于长连接、普通 HTTP 请求和文件下载场景。 <?xml version"1.0" encoding"utf-8"?> <LinearLayout xmlns:android"http://schemas…...

为什么需要建设工程项目管理?工程项目管理有哪些亮点功能?
在建筑行业,项目管理的重要性不言而喻。随着工程规模的扩大、技术复杂度的提升,传统的管理模式已经难以满足现代工程的需求。过去,许多企业依赖手工记录、口头沟通和分散的信息管理,导致效率低下、成本失控、风险频发。例如&#…...
MySQL中【正则表达式】用法
MySQL 中正则表达式通过 REGEXP 或 RLIKE 操作符实现(两者等价),用于在 WHERE 子句中进行复杂的字符串模式匹配。以下是核心用法和示例: 一、基础语法 SELECT column_name FROM table_name WHERE column_name REGEXP pattern; …...
PAN/FPN
import torch import torch.nn as nn import torch.nn.functional as F import mathclass LowResQueryHighResKVAttention(nn.Module):"""方案 1: 低分辨率特征 (Query) 查询高分辨率特征 (Key, Value).输出分辨率与低分辨率输入相同。"""def __…...

搭建DNS域名解析服务器(正向解析资源文件)
正向解析资源文件 1)准备工作 服务端及客户端都关闭安全软件 [rootlocalhost ~]# systemctl stop firewalld [rootlocalhost ~]# setenforce 0 2)服务端安装软件:bind 1.配置yum源 [rootlocalhost ~]# cat /etc/yum.repos.d/base.repo [Base…...

在 Spring Boot 中使用 JSP
jsp? 好多年没用了。重新整一下 还费了点时间,记录一下。 项目结构: pom: <?xml version"1.0" encoding"UTF-8"?> <project xmlns"http://maven.apache.org/POM/4.0.0" xmlns:xsi"http://ww…...
全面解析数据库:从基础概念到前沿应用
在数字化时代,数据已成为企业和社会发展的核心资产,而数据库作为存储、管理和处理数据的关键工具,在各个领域发挥着举足轻重的作用。从电商平台的商品信息管理,到社交网络的用户数据存储,再到金融行业的交易记录处理&a…...

实战设计模式之模板方法模式
概述 模板方法模式定义了一个操作中的算法骨架,并将某些步骤延迟到子类中实现。模板方法使得子类可以在不改变算法结构的前提下,重新定义算法中的某些步骤。简单来说,就是在一个方法中定义了要执行的步骤顺序或算法框架,但允许子类…...

DeepSeek越强,Kimi越慌?
被DeepSeek吊打的Kimi,还有多少人在用? 去年,月之暗面创始人杨植麟别提有多风光了。90后清华学霸,国产大模型六小虎之一,手握十几亿美金的融资。旗下的AI助手Kimi烧钱如流水,单月光是投流就花费2个亿。 疯…...