当前位置: 首页 > news >正文

设计模式使用场景实现示例及优缺点(结构型模式——组合模式)

结构型模式

组合模式(Composite Pattern)

组合模式使得用户对单个对象和组合对象的使用具有一致性。
有时候又叫做部分-整体模式,它使我们树型结构的问题中,模糊了简单元素和复杂元素的概念,客户程序可以像处理简单元素一样来处理复杂元素,从而使得客户程序与复杂元素的内部结构解耦。
组合模式让你可以优化处理递归或分级数据结构。有许多关于分级数据结构的例子,使得组合模式非常有用武之地。关于分级数据结构的一个普遍性的例子是你每次使用电脑时所遇到的:文件系统。文件系统由目录和文件组成。每个目录都可以装内容。目录的内容可以是文件,也可以是目录。按照这种方式,计算机的文件系统就是以递归结构来组织的。如果你想要描述这样的数据结构,那么你可以使用组合模式Composite。

适用场景

  1. 管理层次结构

    • 当你需要表示对象的部分-整体层次结构时,可以使用组合模式。
  2. 统一单个对象和组合对象的处理方式

    • 当你希望客户端无需区分单个对象和组合对象即可操作它们时。
  3. 简化代码结构

    • 通过将统一的操作应用于组合结构的所有元素,可以简化客户端代码。

组合模式的核心组件

组件(Component)

所有参与组合模式的对象都需要实现一个‘组件’接口。这个接口规定了一系列的操作,如添加、删除、以及获取子元素等,确保所有的对象都可以被一致对待。

叶节点(Leaf)

在组合模式中,叶节点代表没有子节点的对象。它是组合结构的基本元素,不能再被分解。

复合节点(Composite)

与叶节点相对应,复合节点是那些含有子节点的对象。它实现了组件接口中与子节点操作相关的方法,如增加或删除子节点。

实现示例(Java)

以下是一个简单的组合模式的实现示例,展示如何将对象组织成树形结构,并统一处理。

1. 定义组件接口
public interface Component {void operation();void add(Component component);void remove(Component component);Component getChild(int i);
}
2. 定义叶节点类
public class Leaf implements Component {private String name;public Leaf(String name) {this.name = name;}public void operation() {System.out.println("Leaf " + name + ": operation");}public void add(Component component) {throw new UnsupportedOperationException();}public void remove(Component component) {throw new UnsupportedOperationException();}public Component getChild(int i) {throw new UnsupportedOperationException();}
}
3. 定义组合类
import java.util.ArrayList;
import java.util.List;public class Composite implements Component {private List<Component> children = new ArrayList<>();private String name;public Composite(String name) {this.name = name;}public void operation() {System.out.println("Composite " + name + ": operation");for (Component component : children) {component.operation();}}public void add(Component component) {children.add(component);}public void remove(Component component) {children.remove(component);}public Component getChild(int i) {return children.get(i);}
}
4. 客户端代码
public class Client {public static void main(String[] args) {Composite root = new Composite("root");Composite branch1 = new Composite("branch1");Composite branch2 = new Composite("branch2");Leaf leaf1 = new Leaf("leaf1");Leaf leaf2 = new Leaf("leaf2");root.add(branch1);root.add(branch2);branch1.add(leaf1);branch2.add(leaf2);root.operation();}
}

优点

  1. 简化客户端代码

    • 客户端可以统一对待单个对象和组合对象。
  2. 增加新类型的组件容易

    • 在不修改现有代码的情况下,可以很容易地添加新类型的组件。
  3. 形成树形结构

    • 明确地定义了复杂对象的组成部分和子部件的层次关系。

缺点

  1. 设计复杂

    • 设计组合结构时,需要仔细考虑整体与部分的关系,可能会导致设计上的复杂性。
  2. 过度泛化

    • 组件接口的设计可能过于泛化,导致一些组件实现了它们不需要的操作。

类图

Client|v
Component <---- Composite|vLeaf

总结

组合模式提供了一种灵活的结构,用于表示具有层次结构的对象。它使得客户端可以统一地处理单个对象和组合对象,简化了客户端代码的复杂性。这种模式特别适合那些需要处理对象集合的场景,例如图形用户界面组件、文件系统等。

相关文章:

设计模式使用场景实现示例及优缺点(结构型模式——组合模式)

结构型模式 组合模式&#xff08;Composite Pattern&#xff09; 组合模式使得用户对单个对象和组合对象的使用具有一致性。 有时候又叫做部分-整体模式&#xff0c;它使我们树型结构的问题中&#xff0c;模糊了简单元素和复杂元素的概念&#xff0c;客户程序可以像处理简单元…...

《系统架构设计师教程(第2版)》第11章-未来信息综合技术-06-云计算(Cloud Computing) 技术概述

文章目录 1. 相关概念2. 云计算的服务方式2.1 软件即服务 (SaaS)2.2 平台即服务 (PaaS)2.3 基础设施即服务 (IaaS)2.4 三种服务方式的分析2.4.1 在灵活性2.4.2 方便性方 3. 云计算的部署模式3.1 公有云3.2 社区云3.3 私有云3.4 混合云 4. 云计算的发展历程4.1 虚拟化技术4.2 分…...

网络安全工作者如何解决网络拥堵

网络如同现代社会的血管&#xff0c;承载着信息的血液流动。然而&#xff0c;随着数据流量的激增&#xff0c;网络拥堵已成为不容忽视的问题&#xff0c;它像是一场数字世界的交通堵塞&#xff0c;减缓了信息传递的速度&#xff0c;扰乱了网络空间的秩序。作为网络安全的守护者…...

电脑显示mfc140u.dll丢失的修复方法,总结7种有效的方法

mfc140u.dll是什么&#xff1f;为什么电脑会出现mfc140u.dll丢失&#xff1f;那么mfc140u.dll丢失会给电脑带来什么影响&#xff1f;mfc140u.dll丢失怎么办&#xff1f;今天详细给大家一一探讨一下mfc140u.dll文件与mfc140u.dll丢失的多种不同解决方法分享&#xff01; 一、mfc…...

ospf的MGRE实验

第一步&#xff1a;配IP [R1-GigabitEthernet0/0/0]ip address 12.0.0.1 24 [R1-GigabitEthernet0/0/1]ip address 21.0.0.1 24 [R1-LoopBack0]ip address 192.168.1.1 24 [ISP-GigabitEthernet0/0/0]ip address 12.0.0.2 24 [ISP-GigabitEthernet0/0/1]ip address 21.0.0.2 24…...

开发指南047-前端模块版本

平台前端框架内置了一个文件version.vue <template> <div> <br> 应用名称: {{name}} <br> 当前版本&#xff1a;{{version}} <br> 服务网关: {{gateway}} </div> </template> <scrip…...

c#中的字符串方法

Concat() String.Concat(字符串1 字符串n) 字符串拼接 Contains () 字符串1.Contains(字符串2) 字符串1是否包含字符串2返回布尔值 CopyTo() 字符串1.CopyTo(0,空数组,0,5); 从哪开始 复制到哪里 从哪开始存 存储的个数 tartsWith 字符串1.StartsWith("字符串") 以…...

成像光谱遥感技术中的AI革命:ChatGPT

遥感技术主要通过卫星和飞机从远处观察和测量我们的环境&#xff0c;是理解和监测地球物理、化学和生物系统的基石。ChatGPT是由OpenAI开发的最先进的语言模型&#xff0c;在理解和生成人类语言方面表现出了非凡的能力&#xff0c;ChatGPT在遥感中的应用&#xff0c;人工智能在…...

学习分布式事务遇到的小bug

一、介绍Seata 在处理分布式事务时我用到是Seata&#xff0c;Seata的事务管理中有三个重要的角色&#xff1a; TC (Transaction Coordinator) - 事务协调者&#xff1a;维护全局和分支事务的状态&#xff0c;协调全局事务提交或回滚。 TM (Transaction Manager) - 事务管理器…...

ElasticSearch学习之路

前言 为什么学ElasticSearch&#xff1f; 数据一般有如下三种类型&#xff1a; 结构化数据&#xff0c;如&#xff1a;MySQL的表&#xff0c;一般通过索引提高查询效率非结构化数据&#xff0c;如&#xff1a;图片、音频等不能用表结构表示的数据&#xff0c;一般保存到mong…...

(C++二叉树02) 翻转二叉树 对称二叉树 二叉树的深度

226、翻转二叉树 递归法&#xff1a; 交换两个结点可以用swap()方法 class Solution { public:TreeNode* invertTree(TreeNode* root) {if(root NULL) return NULL;TreeNode* tem root->left;root->left root->right;root->right tem;invertTree(root->l…...

高阶面试-mongodb

mongodb的特点&#xff0c;为什么使用他 nosql数据库&#xff0c;前端到后端到数据库&#xff0c;都是json&#xff0c;无模式&#xff0c;数据模型发生变更&#xff0c;不需要强制更新表结构&#xff0c;可以快速实现需求迭代。 天生分布式&#xff0c;高可用&#xff0c;处…...

MySQL数据库慢查询日志、SQL分析、数据库诊断

1 数据库调优维度 业务需求&#xff1a;勇敢地对不合理的需求说不系统架构&#xff1a;做架构设计的时候&#xff0c;应充分考虑业务的实际情况&#xff0c;考虑好数据库的各种选择(读写分离?高可用?实例个数?分库分表?用什么数据库?)SQL及索引&#xff1a;根据需求编写良…...

[短笔记] Ubuntu配置环境变量的最佳实践

结论&#xff1a; 不确定是否要设为系统&#xff0c;则先针对当前用户设&#xff0c;写~/.profile确定为系统级&#xff0c;写/etc/environment&#xff0c;注意无需export不推荐写在~/.bashrc&#xff08;Ubuntu不推荐&#xff0c;理由见references&#xff09; References&…...

怎样在 PostgreSQL 中优化对多表关联的连接条件选择?

&#x1f345;关注博主&#x1f397;️ 带你畅游技术世界&#xff0c;不错过每一次成长机会&#xff01;&#x1f4da;领书&#xff1a;PostgreSQL 入门到精通.pdf 文章目录 怎样在 PostgreSQL 中优化对多表关联的连接条件选择一、理解多表关联的基本概念二、选择合适的连接条件…...

【Flowable | 第四篇】flowable工作流多任务实例节点实现会签/或签

文章目录 5.flowable工作流多任务实例节点实现会签/或签5.1会签/或签概念5.2多实例配置说明5.3会签例子5.3.1用户候选人配置5.3.2多实例配置5.3.3执行监听器配置5.3.5测试 5.flowable工作流多任务实例节点实现会签/或签 5.1会签/或签概念 我们在本篇中&#xff0c;将使用多任…...

解决C#读取US7ASCII字符集oracle数据库的中文乱码

&#x1f468; 作者简介&#xff1a;大家好&#xff0c;我是Taro&#xff0c;全栈领域创作者 ✒️ 个人主页&#xff1a;唐璜Taro &#x1f680; 支持我&#xff1a;点赞&#x1f44d;&#x1f4dd; 评论 ⭐️收藏 文章目录 前言一、解决方法二、安装System.Data.OleDb连接库三…...

Linux驱动开发中设备节点、虚拟节点、逻辑节点之间的区别与关系

概述 在Linux DTS中我们可以看到各种各样的节点&#xff0c;每个节点都是对某一物理设备或功能抽象或具体的描述 设备节点 设备节点是对物理设备的一种具体的描述&#xff0c;它一般包含设备的寄存器地址、设备的类型、中断、时钟频率这些通用信息&#xff0c;除了这些通用信…...

【iOS】——ARC源码探究

一、ARC介绍 ARC的全称Auto Reference Counting. 也就是自动引用计数。使用MRC时开发者不得不花大量的时间在内存管理上&#xff0c;并且容易出现内存泄漏或者release一个已被释放的对象&#xff0c;导致crash。后来&#xff0c;Apple引入了ARC。使用ARC&#xff0c;开发者不再…...

ubuntu服务器安装labelimg报错记录

文章目录 报错提示查看报错原因安装报错 报错提示 按照步骤安装完labelimg后&#xff0c;在终端输入labelImg后&#xff0c;报错&#xff1a; (labelimg) rootinteractive59753:~# labelImg ………………Got keys from plugin meta data ("xcb") QFactoryLoader::Q…...

label-studio的使用教程(导入本地路径)

文章目录 1. 准备环境2. 脚本启动2.1 Windows2.2 Linux 3. 安装label-studio机器学习后端3.1 pip安装(推荐)3.2 GitHub仓库安装 4. 后端配置4.1 yolo环境4.2 引入后端模型4.3 修改脚本4.4 启动后端 5. 标注工程5.1 创建工程5.2 配置图片路径5.3 配置工程类型标签5.4 配置模型5.…...

云启出海,智联未来|阿里云网络「企业出海」系列客户沙龙上海站圆满落地

借阿里云中企出海大会的东风&#xff0c;以**「云启出海&#xff0c;智联未来&#xff5c;打造安全可靠的出海云网络引擎」为主题的阿里云企业出海客户沙龙云网络&安全专场于5.28日下午在上海顺利举办&#xff0c;现场吸引了来自携程、小红书、米哈游、哔哩哔哩、波克城市、…...

C++中string流知识详解和示例

一、概览与类体系 C 提供三种基于内存字符串的流&#xff0c;定义在 <sstream> 中&#xff1a; std::istringstream&#xff1a;输入流&#xff0c;从已有字符串中读取并解析。std::ostringstream&#xff1a;输出流&#xff0c;向内部缓冲区写入内容&#xff0c;最终取…...

多模态大语言模型arxiv论文略读(108)

CROME: Cross-Modal Adapters for Efficient Multimodal LLM ➡️ 论文标题&#xff1a;CROME: Cross-Modal Adapters for Efficient Multimodal LLM ➡️ 论文作者&#xff1a;Sayna Ebrahimi, Sercan O. Arik, Tejas Nama, Tomas Pfister ➡️ 研究机构: Google Cloud AI Re…...

Device Mapper 机制

Device Mapper 机制详解 Device Mapper&#xff08;简称 DM&#xff09;是 Linux 内核中的一套通用块设备映射框架&#xff0c;为 LVM、加密磁盘、RAID 等提供底层支持。本文将详细介绍 Device Mapper 的原理、实现、内核配置、常用工具、操作测试流程&#xff0c;并配以详细的…...

华硕a豆14 Air香氛版,美学与科技的馨香融合

在快节奏的现代生活中&#xff0c;我们渴望一个能激发创想、愉悦感官的工作与生活伙伴&#xff0c;它不仅是冰冷的科技工具&#xff0c;更能触动我们内心深处的细腻情感。正是在这样的期许下&#xff0c;华硕a豆14 Air香氛版翩然而至&#xff0c;它以一种前所未有的方式&#x…...

JAVA后端开发——多租户

数据隔离是多租户系统中的核心概念&#xff0c;确保一个租户&#xff08;在这个系统中可能是一个公司或一个独立的客户&#xff09;的数据对其他租户是不可见的。在 RuoYi 框架&#xff08;您当前项目所使用的基础框架&#xff09;中&#xff0c;这通常是通过在数据表中增加一个…...

QT3D学习笔记——圆台、圆锥

类名作用Qt3DWindow3D渲染窗口容器QEntity场景中的实体&#xff08;对象或容器&#xff09;QCamera控制观察视角QPointLight点光源QConeMesh圆锥几何网格QTransform控制实体的位置/旋转/缩放QPhongMaterialPhong光照材质&#xff08;定义颜色、反光等&#xff09;QFirstPersonC…...

Caliper 负载(Workload)详细解析

Caliper 负载(Workload)详细解析 负载(Workload)是 Caliper 性能测试的核心部分,它定义了测试期间要执行的具体合约调用行为和交易模式。下面我将全面深入地讲解负载的各个方面。 一、负载模块基本结构 一个典型的负载模块(如 workload.js)包含以下基本结构: use strict;/…...

人工智能--安全大模型训练计划:基于Fine-tuning + LLM Agent

安全大模型训练计划&#xff1a;基于Fine-tuning LLM Agent 1. 构建高质量安全数据集 目标&#xff1a;为安全大模型创建高质量、去偏、符合伦理的训练数据集&#xff0c;涵盖安全相关任务&#xff08;如有害内容检测、隐私保护、道德推理等&#xff09;。 1.1 数据收集 描…...