MMLab-dataset_analysis
数据分析工具
这里写目录标题
- 数据分析工具
- dataset_analysis.py
- 数据可视化分析
- benchmark.py
- browse_coco_json.py
- browse_dataset.py
- Optimize_anchors
mmyolo、mmsegmentation等提供了数据集分析工具
dataset_analysis.py
数据采用coco格式数据
根据配置文件分析全部数据类型或指定类型的Bbox_num、bbox_wh\bbox_wh_ratio、bbox_area
示例数据采用的是讯飞X光安检物品监测数据集,通过结果可以看出Knife、wrench、powerbank等小物品的数据相对较少,Knife类别最少,存在显著的类别不平衡问题。
数据可视化分析
- bbox_area
- bbox_ratio
- bbox_wh
benchmark.py
测试模型性能:推理速度
!python /root/mmyolo/tools/analysis_tools/browse_coco_json.py --data-root /root/autodl-tmp/train --img-dir /root/autodl-tmp/train/images/ --ann-file /root/autodl-tmp/train/annotations/instances_train2014.json
browse_coco_json.py
将数据集与标签进行可视化
browse_dataset.py
-将数据可视化保存输出到文件夹下,包含两种模式
-m:‘original’, ‘transformed’, ‘pipeline’
‘original’:金输出原始图像
‘transformed’:输出变换后的图像
‘pipeline’:输出数据增流各个阶段的图像
Optimize_anchors
通过分析数据,优化先验anchor的设置,仅支持YOLOAnchorGenerator
“”"Optimize anchor settings on a specific dataset.
This script provides three methods to optimize YOLO anchors including k-means
anchor cluster, differential evolution and v5-k-means. You can use
--algorithm k-means
, --algorithm differential_evolution
and
--algorithm v5-k-means
to switch those methods.
Example:
Use k-means anchor cluster::python tools/analysis_tools/optimize_anchors.py ${CONFIG} \--algorithm k-means --input-shape ${INPUT_SHAPE [WIDTH HEIGHT]} \--out-dir ${OUT_DIR}Use differential evolution to optimize anchors::python tools/analysis_tools/optimize_anchors.py ${CONFIG} \--algorithm differential_evolution \--input-shape ${INPUT_SHAPE [WIDTH HEIGHT]} \--out-dir ${OUT_DIR}Use v5-k-means to optimize anchors::python tools/analysis_tools/optimize_anchors.py ${CONFIG} \--algorithm v5-k-means \--input-shape ${INPUT_SHAPE [WIDTH HEIGHT]} \--prior_match_thr ${PRIOR_MATCH_THR} \--out-dir ${OUT_DIR}
该工具默认调用gpu进行数据计算,算法名称还有个小bug,需要注意一下
if args.algorithm == 'k-means':optimizer = YOLOKMeansAnchorOptimizer(dataset=dataset,input_shape=input_shape,device=args.device,num_anchor_per_level=num_anchor_per_level,iters=args.iters,logger=logger,out_dir=args.out_dir)elif args.algorithm == 'DE':optimizer = YOLODEAnchorOptimizer(dataset=dataset,input_shape=input_shape,device=args.device,num_anchor_per_level=num_anchor_per_level,iters=args.iters,logger=logger,out_dir=args.out_dir)elif args.algorithm == 'v5-k-means':optimizer = YOLOV5KMeansAnchorOptimizer(dataset=dataset,input_shape=input_shape,device=args.device,num_anchor_per_level=num_anchor_per_level,iters=args.iters,prior_match_thr=args.prior_match_thr,mutation_args=args.mutation_args,augment_args=args.augment_args,logger=logger,out_dir=args.out_dir)else:raise NotImplementedError(f'Only support k-means and differential_evolution, 'f'but get {args.algorithm}')
相关文章:

MMLab-dataset_analysis
数据分析工具 这里写目录标题 数据分析工具dataset_analysis.py数据可视化分析 benchmark.pybrowse_coco_json.pybrowse_dataset.pyOptimize_anchors mmyolo、mmsegmentation等提供了数据集分析工具 dataset_analysis.py 数据采用coco格式数据 根据配置文件分析全部数据类型或…...

艺术与技术的交响曲:CSS绘图的艺术与实践
在前端开发的世界里,CSS(层叠样式表)作为网页布局和样式的基石,其功能早已超越了简单的颜色和间距设置。近年来,随着CSS3的普及,开发者们开始探索CSS在图形绘制方面的潜力,用纯粹的代码创造出令…...

基于 JAVA 的旅游网站设计与实现
点击下载源码 塞北村镇旅游网站设计 摘要 城市旅游产业的日新月异影响着村镇旅游产业的发展变化。网络、电子科技的迅猛前进同样牵动着旅游产业的快速成长。随着人们消费理念的不断发展变化,越来越多的人开始注意精神文明的追求,而不仅仅只是在意物质消…...

【C++深度探索】二叉搜索树的全面解析与高效实现
🔥 个人主页:大耳朵土土垚 🔥 所属专栏:C从入门至进阶 这里将会不定期更新有关C/C的内容,欢迎大家点赞,收藏,评论🥳🥳🎉🎉🎉 文章目录…...
Java实习记录 1 ——初入职场
Java实习记录 1 ——初入职场 引言正文收获 引言 在几个月的春招过程中,在完成学校学业的同时,进行投简历、笔试和面试。得益于较为扎实的技术基础,在暑假来临之际,找到了第一份实习工作。目前已入职将近半个月。记录一下实习经历…...
opencv—常用函数学习_“干货“_3
目录 八、图像拼接 水平拼接图像 (hconcat) 垂直拼接图像 (vconcat) 全景图像拼接 (Stitcher) 九、颜色通道及数据格式 转换图像的颜色空间 (cvtColor) 转换图像的数据类型 (convertTo) 分离和合并颜色通道 (split 和 merge) 提取和插入颜色通道 (extractChannel 和 in…...

用Docker来开发
未完成。。。 现在好像用Docker是越来越多了。之前其实也看过docker的原理,大概就是cgroup那些,不过现在就不看原理了,不谈理论,只看实际中怎么用,解决眼前问题。 用docker来做开发,其实就是解决的编译环境…...

从0开始的STM32HAL库学习2
外部中断(HAL库GPIO讲解) 今天我们会详细地学习STM32CubeMX配置外部中断,并且讲解HAL库的GPIO的各种函数。 准备工作: 1、STM32开发板(我的是STM32F103C8T6) 2、STM32CubeMx软件、 IDE: Keil软件 3、STM32F1xx/ST…...

【MySQL篇】Percona XtraBackup工具备份指南:常用备份命令详解与实践(第二篇,总共五篇)
💫《博主介绍》:✨又是一天没白过,我是奈斯,DBA一名✨ 💫《擅长领域》:✌️擅长Oracle、MySQL、SQLserver、阿里云AnalyticDB for MySQL(分布式数据仓库)、Linux,也在扩展大数据方向的知识面✌️…...

Spock单元测试框架使用介绍和实践
背景 单元测试是保证我们写的代码是我们想要的结果的最有效的办法。根据下面的数据图统计,单元测试从长期来看也有很大的收益。 单元测试收益: 它是最容易保证代码覆盖率达到100%的测试。可以⼤幅降低上线时的紧张指数。单元测试能更快地发现问题。单元测试的性…...

web安全之跨站脚本攻击xss
定义: 后果 比如黑客可以通过恶意代码,拿到用户的cookie就可以去登陆了 分类 存储型 攻击者把恶意脚本存储在目标网站的数据库中(没有过滤直接保存),当用户访问这个页面时,恶意脚本会从数据库中被读取并在用户浏览器中执行。比如在那些允许用户评论的…...

TCP与UDP的理解
文章目录 UDP协议UDP协议的特点UDP的应用以及杂项 TCP协议TCP协议段格式解释和TCP过程详解确认应答机制 -- 序号和确认序号以及6位标志位中的ACK超时重传机制连接管理机制 与标志位SYN,FIN,ACK滑动窗口与16位窗口大小流量控制拥塞控制延迟应答捎带应答和面向字节流粘包问题TCP异…...
有效应对服务器遭受CC攻击的策略与实践
分布式拒绝服务(DDoS)攻击,尤其是其中的HTTP洪水攻击或称为CC攻击(Challenge Collapsar),是当今互联网安全领域的一大挑战。这种攻击通过大量合法的请求占用大量网络资源,导致服务器无法正常响应…...
STM32判断休眠
STM32是否进入休眠模式(或称为睡眠模式)的判断主要基于其功耗状态、内部时钟的关闭情况以及唤醒后的行为。以下是根据参考文章提供的信息,判断STM32是否进入休眠模式的方法: 功耗状态: STM32在休眠模式下,功耗会显著降低。这是因为休眠模式仅关闭了内核时钟,但外设仍然保…...

TikTok内嵌跨境商城全开源_搭建教程/前端uniapp+后端源码
多语言跨境电商外贸商城 TikTok内嵌商城,商家入驻一键铺货一键提货 全开源完美运营,接在tiktok里面的商城内嵌,也可单独分开出来当独立站运营 二十一种语言,可以做很多国家的市场,支持商家入驻,多店铺等等…...
前端学习(二)
这篇文章是紧接着前一篇前端学习写的,主要要写的是js剩下的基础知识 事件的绑定 什么是事件? HTML 事件可以是浏览器行为,也可以是用户行为。 当这些一些行为发生时,可以自动触发对应的JS函数的运行,我们称之为事件发生.JS的事件驱动指的就是…...

链接追踪系列-10.mall-swarm微服务运行并整合elk-上一篇的番外
因为上一篇没对微服务代码很详细地说明,所以在此借花献佛,使用开源的微服务代码去说明如何去做链路追踪。 项目是开源项目,fork到github以及gitee中,然后拉取到本地 后端代码: https://gitee.com/jelex/mall-swarm.gi…...

用Agent大模型,我发现了Prompt工程师的10大必备技能
随着 AI 如此快速的发展,目前求职市场上已经出现了 AI提示词 岗位。 大家应该跟我一样,对这种新兴岗位充满好奇心,比如:想知道这类岗位目前的需求量、技能要求、薪资情况等等。 这两天我用 Agent 大模型,对AI提示词岗…...

【GraphRAG】微软 graphrag 效果实测
GraphRAG 本文将基于以下来源,对Microsoft GraphRAG分析优缺点、以及示例实测分析。 1. Source 代码仓库: Welcome to GraphRAGhttps://microsoft.github.io/graphrag/ 微软文章1(2024.2.13):GraphRAG: Unlocking…...

十大常用加密软件排行榜|2024企业常用加密软件推荐
在2024年的市场环境中,随着数字化转型的深入和网络威胁的日益复杂,企业对数据安全的重视达到了新高度。加密软件作为保护信息免遭未授权访问和恶意攻击的关键工具,其重要性日益凸显。以下是根据市场反馈和专业评测整理的2024年度十大常用加密…...
Ubuntu系统下交叉编译openssl
一、参考资料 OpenSSL&&libcurl库的交叉编译 - hesetone - 博客园 二、准备工作 1. 编译环境 宿主机:Ubuntu 20.04.6 LTSHost:ARM32位交叉编译器:arm-linux-gnueabihf-gcc-11.1.0 2. 设置交叉编译工具链 在交叉编译之前&#x…...
基于大模型的 UI 自动化系统
基于大模型的 UI 自动化系统 下面是一个完整的 Python 系统,利用大模型实现智能 UI 自动化,结合计算机视觉和自然语言处理技术,实现"看屏操作"的能力。 系统架构设计 #mermaid-svg-2gn2GRvh5WCP2ktF {font-family:"trebuchet ms",verdana,arial,sans-…...
uni-app学习笔记二十二---使用vite.config.js全局导入常用依赖
在前面的练习中,每个页面需要使用ref,onShow等生命周期钩子函数时都需要像下面这样导入 import {onMounted, ref} from "vue" 如果不想每个页面都导入,需要使用node.js命令npm安装unplugin-auto-import npm install unplugin-au…...

《从零掌握MIPI CSI-2: 协议精解与FPGA摄像头开发实战》-- CSI-2 协议详细解析 (一)
CSI-2 协议详细解析 (一) 1. CSI-2层定义(CSI-2 Layer Definitions) 分层结构 :CSI-2协议分为6层: 物理层(PHY Layer) : 定义电气特性、时钟机制和传输介质(导线&#…...
Objective-C常用命名规范总结
【OC】常用命名规范总结 文章目录 【OC】常用命名规范总结1.类名(Class Name)2.协议名(Protocol Name)3.方法名(Method Name)4.属性名(Property Name)5.局部变量/实例变量(Local / Instance Variables&…...
第25节 Node.js 断言测试
Node.js的assert模块主要用于编写程序的单元测试时使用,通过断言可以提早发现和排查出错误。 稳定性: 5 - 锁定 这个模块可用于应用的单元测试,通过 require(assert) 可以使用这个模块。 assert.fail(actual, expected, message, operator) 使用参数…...
C# SqlSugar:依赖注入与仓储模式实践
C# SqlSugar:依赖注入与仓储模式实践 在 C# 的应用开发中,数据库操作是必不可少的环节。为了让数据访问层更加简洁、高效且易于维护,许多开发者会选择成熟的 ORM(对象关系映射)框架,SqlSugar 就是其中备受…...

c#开发AI模型对话
AI模型 前面已经介绍了一般AI模型本地部署,直接调用现成的模型数据。这里主要讲述讲接口集成到我们自己的程序中使用方式。 微软提供了ML.NET来开发和使用AI模型,但是目前国内可能使用不多,至少实践例子很少看见。开发训练模型就不介绍了&am…...

C++ Visual Studio 2017厂商给的源码没有.sln文件 易兆微芯片下载工具加开机动画下载。
1.先用Visual Studio 2017打开Yichip YC31xx loader.vcxproj,再用Visual Studio 2022打开。再保侟就有.sln文件了。 易兆微芯片下载工具加开机动画下载 ExtraDownloadFile1Info.\logo.bin|0|0|10D2000|0 MFC应用兼容CMD 在BOOL CYichipYC31xxloaderDlg::OnIni…...

优选算法第十二讲:队列 + 宽搜 优先级队列
优选算法第十二讲:队列 宽搜 && 优先级队列 1.N叉树的层序遍历2.二叉树的锯齿型层序遍历3.二叉树最大宽度4.在每个树行中找最大值5.优先级队列 -- 最后一块石头的重量6.数据流中的第K大元素7.前K个高频单词8.数据流的中位数 1.N叉树的层序遍历 2.二叉树的锯…...