当前位置: 首页 > news >正文

NLP教程:1 词袋模型和TFIDF模型

文章目录

  • 词袋模型
  • TF-IDF模型
  • 词汇表模型


词袋模型

  文本特征提取有两个非常重要的模型:

  • 词集模型:单词构成的集合,集合自然每个元素都只有一个,也即词集中的每个单词都只有一个。

  • 词袋模型:在词集的基础上如果一个单词在文档中出现不止一次,统计其出现的次数(频数)。

  两者本质上的区别,词袋是在词集的基础上增加了频率的维度,词集只关注有和没有,词袋还要关注有几个。
  假设我们要对一篇文章进行特征化,最常见的方式就是词袋。
  导入相关的函数库:

from sklearn.feature_extraction.text import CountVectorizer

  实例化分词对象:

vectorizer = CountVectorizer(min_df=1)
>>> vectorizer                    CountVectorizer(analyzer=...'word', binary=False, decode_error=...'strict',dtype=<... 'numpy.int64'>, encoding=...'utf-8', input=...'content',lowercase=True, max_df=1.0, max_features=None, min_df=1,ngram_range=(1, 1), preprocessor=None, stop_words=None,strip_accents=None, token_pattern=...'(?u)\\b\\w\\w+\\b',tokenizer=None, vocabulary=None)

  将文本进行词袋处理:

import jieba
from sklearn.feature_extraction.text import CountVectorizertxt="""
变压器停、送电操作时,应先将该变压器中性点接地,对于调度要求不接地的变压器,在投入系统后应拉开中性点接地刀闸。在中性点直接接地系统中,运行中的变压器中性点接地闸刀需倒换时,应先合上另一台主变压器的中性点接地闸刀,再拉开原来变压器的中性点接地闸刀。运行中的变压器中性点接地方式、中性点倒换操作的原则是保证该网络不失去接地点,采用先合后拉的操作方法。
变压器中性点的接地方式变化后其保护应相应调整,即是变压器中性点接地运行时,投入中性点零序过流保护,停用中性点零序过压保护及间隔零序过流保护;变压器中性点不接地运行时,投入中性点零序过压保护及间隔零序保护,停用中性点零序过流保护,否则有可能造成保护误动作。
"""
words = jieba.lcut(txt)     # 使用精确模式对文本进行分词
vectorizer = CountVectorizer(min_df=1)#min_df 默认为1(int),表示“忽略少于1个文档中出现的术语”,因此,默认设置不会忽略任何术语,该参数不起作用X = vectorizer.fit_transform(words)#获取对应的特征名称:
print(vectorizer.get_feature_names())#feature_names可能不等于words
#词袋化
print(X.toarray())

词袋类似array([[0, 1, 1, 1, 0, 0, 1, 0, 1],
[0, 1, 0, 1, 0, 2, 1, 0, 1],
[1, 0, 0, 0, 1, 0, 1, 1, 0],
[0, 1, 1, 1, 0, 0, 1, 0, 1]]…)

  但是如何可以使用现有的词袋的特征,对其他文本进行特征提取呢?我们定义词袋的特征空间叫做词汇表vocabulary:

vocabulary=vectorizer.vocabulary_

  针对其他文本进行词袋处理时,可以直接使用现有的词汇表:

new_vectorizer = CountVectorizer(min_df=1, vocabulary=vocabulary)

  CountVectorize函数比较重要的几个参数为:

  • decode_error,处理解码失败的方式,分为‘strict’、‘ignore’、‘replace’三种方式。
  • strip_accents,在预处理步骤中移除重音的方式。
  • max_features,词袋特征个数的最大值。
  • stop_words,判断word结束的方式。
  • max_df,df最大值。
  • min_df,df最小值 。
  • binary,默认为False,当与TF-IDF结合使用时需要设置为True。
    本例中处理的数据集均为英文,所以针对解码失败直接忽略,使用ignore方式,stop_words的方式使用english,strip_accents方式为ascii方式。

TF-IDF模型

  文本处理领域还有一种特征提取方法,叫做TF-IDF模型(term frequency–inverse document frequency,词频与逆向文件频率)。TF-IDF是一种统计方法,用以评估某一字词对于一个文件集或一个语料库的重要程度。字词的重要性随着它在文件中出现的次数成正比增加,但同时会随着它在语料库中出现的频率成反比下降。TF-IDF加权的各种形式常被搜索引擎应用,作为文件与用户查询之间相关程度的度量或评级。
TF-IDF的主要思想是,如果某个词或短语在一篇文章中出现的频率TF(Term Frequency,词频),词频高,并且在其他文章中很少出现,则认为此词或者短语具有很好的类别区分能力,适合用来分类。TF-IDF实际上是:TF * IDF。TF表示词条在文档d中出现的频率。IDF(inverse document frequency,逆向文件频率)的主要思想是:如果包含词条t的文档越少,也就是n越小,IDF越大,则说明词条t具有很好的类别区分能力。如果某一类文档C中包含词条t的文档数为m,而其他类包含t的文档总数为k,显然所有包含t的文档数n=m+k,当m大的时候,n也大,按照IDF公式得到的IDF的值会小,就说明该词条t类别区分能力不强。但是实际上,如果一个词条在一个类的文档中频繁出现,则说明该词条能够很好代表这个类的文本的特征,这样的词条应该给它们赋予较高的权重,并选来作为该类文本的特征词以区别与其他类文档。

示例
文档

中文停用词见
停用词

import jieba
import pandas as pd
import re
from sklearn.feature_extraction.text import CountVectorizer#词袋
from sklearn.feature_extraction.text import TfidfTransformer#tfidffile=pd.read_excel("文档.xls")# 定义删除除字母,数字,汉字以外的所有符号的函数
def remove_punctuation(line):line = str(line)if line.strip() == '':return ''rule = re.compile(u"[^a-zA-Z0-9\u4E00-\u9FA5]")line = rule.sub('', line)return line#停用词
def stopwordslist(filepath):try:stopwords = [line.strip() for line in open(filepath, 'r', encoding='utf-8').readlines()]except:stopwords = [line.strip() for line in open(filepath, 'r', encoding='gbk').readlines()]return stopwords# 加载停用词
stopwords = stopwordslist("停用词.txt")#去除标点符号
file['clean_review']=file['文档'].apply(remove_punctuation)
# 去除停用词
file['cut_review'] = file['clean_review'].apply(lambda x: " ".join([w for w in list(jieba.cut(x)) if w not in stopwords]))#词袋计数
count_vect = CountVectorizer()
X_train_counts = count_vect.fit_transform(file['cut_review'])#tf-idf
tfidf_transformer = TfidfTransformer()
X_train_tfidf = tfidf_transformer.fit_transform(X_train_counts)

X_train_tfidf
(0, 123) 0.08779682150216786 表示第1篇文档词袋中第123个单词的tdidf为0.087

X_train_tfidf.toarray()

词汇表模型

词袋模型可以很好的表现文本由哪些单词组成,但是却无法表达出单词之间的前后关系,于是人们借鉴了词袋模型的思想,使用生成的词汇表对原有句子按照单词逐个进行编码。TensorFlow默认支持了这种模型:

tf.contrib.learn.preprocessing.VocabularyProcessor (max_document_length,    min_frequency=0,vocabulary=None,tokenizer_fn=None)

其中各个参数的含义为:

  • max_document_length:,文档的最大长度。如果文本的长度大于最大长度,那么它会被剪切,反之则用0填充。
  • min_frequency,词频的最小值,出现次数小于最小词频则不会被收录到词表中。
  • vocabulary,CategoricalVocabulary 对象。
  • tokenizer_fn,分词函数。

假设有如下句子需要处理:

x_text =['i love you','me too'
]

基于以上句子生成词汇表,并对’i me too’这句话进行编码:

 vocab_processor = learn.preprocessing.VocabularyProcessor(max_document_length)vocab_processor.fit(x_text)print next(vocab_processor.transform(['i me too'])).tolist()x = np.array(list(vocab_processor.fit_transform(x_text)))print x

运行程序,x_text使用词汇表编码后的数据为:
[[1 2 3 0]
[4 5 0 0]]
'i me too’这句话编码的结果为:
[1, 4, 5, 0]

相关文章:

NLP教程:1 词袋模型和TFIDF模型

文章目录 词袋模型TF-IDF模型词汇表模型 词袋模型 文本特征提取有两个非常重要的模型&#xff1a; 词集模型&#xff1a;单词构成的集合&#xff0c;集合自然每个元素都只有一个&#xff0c;也即词集中的每个单词都只有一个。 词袋模型&#xff1a;在词集的基础上如果一个单词…...

【开源 Mac 工具推荐之 2】洛雪音乐(lx-music-desktop):免费良心的音乐平台

旧版文章&#xff1a;【macOS免费软件推荐】第6期&#xff1a;洛雪音乐 Note&#xff1a;本文在旧版文章的基础上&#xff0c;新更新展示了一些洛雪音乐的新功能&#xff0c;并且描述更为详细。 简介 洛雪音乐&#xff08;GitHub 名&#xff1a;lx-music-desktop &#xff09;…...

AMEYA360:思瑞浦推出汽车级理想二极管ORing控制器TPS65R01Q

聚焦高性能模拟芯片和嵌入式处理器的半导体供应商思瑞浦3PEAK(股票代码&#xff1a;688536)发布汽车级理想二极管ORing控制器TPS65R01Q。 TPS65R01Q拥有20mV正向调节功能&#xff0c;降低系统损耗。快速反向关断(Typ&#xff1a;0.39μs)&#xff0c;在电池反向和各种汽车电气瞬…...

简约的悬浮动态特效404单页源HTML码

源码介绍 简约的悬浮动态特效404单页源HTML码,页面简约美观,可以做网站错误页或者丢失页面,将下面的代码放到空白的HTML里面,然后上传到服务器里面,设置好重定向即可 效果预览 完整源码 <!DOCTYPE html> <html><head><meta charset="utf-8&q…...

Golang 创建 Excel 文件

经常会遇到需要导出数据报表的需求&#xff0c;除了可以通过 encoding/csv 导出 CSV 以外&#xff0c;还可以使用 https://github.com/qax-os/excelize 导出 xlsx 等格式的 excel&#xff0c;下面封装了一个方法&#xff0c;支持多 sheet 的 excel 数据生成&#xff0c;导出按需…...

探索GitHub上的两个革命性开源项目

在数字世界中&#xff0c;总有一些项目能够以其创新性和实用性脱颖而出&#xff0c;吸引全球开发者的目光。今天&#xff0c;我们将深入探索GitHub上的两个令人惊叹的开源项目&#xff1a;Comic Translate和GPTPDF&#xff0c;它们不仅改变了我们处理信息的方式&#xff0c;还极…...

SpringBoot框架学习笔记(三):Lombok 和 Spring Initailizr

1 Lombok 1.1 Lombok 介绍 &#xff08;1&#xff09;Lombok 作用 简化JavaBean开发&#xff0c;可以使用Lombok的注解让代码更加简洁Java项目中&#xff0c;很多没有技术含量又必须存在的代码&#xff1a;POJO的getter/setter/toString&#xff1b;异常处理&#xff1b;I/O…...

【ASP.NET网站传值问题】“object”不包含“GetEnumerator”的公共定义,因此 foreach 语句不能作用于“object”类型的变量等

问题一&#xff1a;不允许遍历 原因&#xff1a;实体未强制转化 后端: ViewData["CateGroupList"] grouplist; 前端加上&#xff1a;var catelist ViewData["CateGroupList"] as List<Catelogue>; 这样就可以遍历catelist了 问题二&#xff1a…...

Stateflow中的状态转换表

状态转换表是表达顺序模态逻辑的另一种方式。不要在Stateflow图表中以图形方式绘制状态和转换&#xff0c;而是使用状态转换表以表格格式表示模态逻辑。 使用状态转换表的好处包括&#xff1a; 易于对类列车状态机进行建模&#xff0c;其中模态逻辑涉及从一个状态到其邻居的转换…...

结合Redis解决接口幂等性问题

结合Redis解决接口幂等性问题 引言正文收获 引言 该问题产生背景是根据需求描述&#xff0c;要求对已发布的课程能进行编辑修改&#xff0c;并且要求能进行回滚。 幂等性问题描述&#xff1a;对同一个接口并发请求产生的结果是不变的。 Get 请求以及 Delete 请求天然保证幂等…...

2024算力基础设施安全架构设计与思考(免费下载)

算网安全体系是将数据中心集群、算力枢纽、一体化大数据中心三个层级的安全需求进行工程化解耦&#xff0c;从国家安全角度统筹设计&#xff0c;通过安全 服务化方式&#xff0c;依托威胁情报和指挥协同通道将三层四级安全体系串联贯通&#xff0c;达成一体化大数据安全目标。 …...

ExoPlayer架构详解与源码分析(15)——Renderer

系列文章目录 ExoPlayer架构详解与源码分析&#xff08;1&#xff09;——前言 ExoPlayer架构详解与源码分析&#xff08;2&#xff09;——Player ExoPlayer架构详解与源码分析&#xff08;3&#xff09;——Timeline ExoPlayer架构详解与源码分析&#xff08;4&#xff09;—…...

网络安全-等级保护制度介绍

一、等保发展历程 &#xff08;1&#xff09;1994国务院147号令 第一次提出等级保护概念&#xff0c;要求对信息系统分等级进行保护 &#xff08;2&#xff09;1999年GB17859 国家强制标准发布&#xff0c;信息系统等级保护必须遵循的法规 &#xff08;3&#xff09;2005年公安…...

【介绍下大数据组件之Storm】

&#x1f3a5;博主&#xff1a;程序员不想YY啊 &#x1f4ab;CSDN优质创作者&#xff0c;CSDN实力新星&#xff0c;CSDN博客专家 &#x1f917;点赞&#x1f388;收藏⭐再看&#x1f4ab;养成习惯 ✨希望本文对您有所裨益&#xff0c;如有不足之处&#xff0c;欢迎在评论区提出…...

React Hook 总结(React 萌新升级打怪中...)

1 useCallback useMemo 和 useCallback 接收的参数都是一样&#xff0c;都是在其依赖项发生变化后才执行&#xff0c;都是返回缓存的值&#xff0c;区别在于 useMemo 返回的是函数运行的结果&#xff0c;useCallback 返回的是函数。 当需要使用 useCallback 的情况通常包括以…...

Typora 1.5.8 版本安装下载教程 (轻量级 Markdown 编辑器),图文步骤详解,免费领取

文章目录 软件介绍软件下载安装步骤激活步骤 软件介绍 Typora是一款基于Markdown语法的轻量级文本编辑器&#xff0c;它的主要目标是为用户提供一个简洁、高效的写作环境。以下是Typora的一些主要特点和功能&#xff1a; 实时预览&#xff1a;Typora支持实时预览功能&#xff0…...

mac docker no space left on device

mac 上 docker 拉取镜像报错 Error response from daemon: write /var/lib/docker/tmp/docker-export-3995807640/b8464f52498789c4ebbc063d508f04e8d2586567fbffa475e3cd9afd3c5a7cf2/layer.tar: no space left on device解决&#xff1a; 增加 docker 虚拟磁盘大小。如下图...

单片机主控的基本电路

论文 1.复位电路 2.启动模式设置接口 3.VBAT供电接口 4.MCU 基本电路 5.参考电压选择端口...

【19】读感 - 架构整洁之道(一)

概述 《架构整洁之道》一书中有提到设计和架构的感念&#xff0c;它们究竟是什么&#xff1f;书是这么说的&#xff0c;它们的层次不一样&#xff0c;架构更“高层级”的说法&#xff0c;这类讨论一般都把“底层”的实现细节排除在外。而设计往往指代的具体的系统底层组织结构…...

多层全连接神经网络(三)---分类问题

问题介绍 机器学习中的监督学习主要分为回归问题和分类问题&#xff0c;我们之前已经讲过回归问题了&#xff0c;它希望预测的结果是连续的&#xff0c;那么分类问题所预测的结果就是离散的类别。这时输入变量可以是离散的&#xff0c;也可以是连续的&#xff0c;而监督学习从数…...

iOS 26 携众系统重磅更新,但“苹果智能”仍与国行无缘

美国西海岸的夏天&#xff0c;再次被苹果点燃。一年一度的全球开发者大会 WWDC25 如期而至&#xff0c;这不仅是开发者的盛宴&#xff0c;更是全球数亿苹果用户翘首以盼的科技春晚。今年&#xff0c;苹果依旧为我们带来了全家桶式的系统更新&#xff0c;包括 iOS 26、iPadOS 26…...

Qt/C++开发监控GB28181系统/取流协议/同时支持udp/tcp被动/tcp主动

一、前言说明 在2011版本的gb28181协议中&#xff0c;拉取视频流只要求udp方式&#xff0c;从2016开始要求新增支持tcp被动和tcp主动两种方式&#xff0c;udp理论上会丢包的&#xff0c;所以实际使用过程可能会出现画面花屏的情况&#xff0c;而tcp肯定不丢包&#xff0c;起码…...

K8S认证|CKS题库+答案| 11. AppArmor

目录 11. AppArmor 免费获取并激活 CKA_v1.31_模拟系统 题目 开始操作&#xff1a; 1&#xff09;、切换集群 2&#xff09;、切换节点 3&#xff09;、切换到 apparmor 的目录 4&#xff09;、执行 apparmor 策略模块 5&#xff09;、修改 pod 文件 6&#xff09;、…...

线程与协程

1. 线程与协程 1.1. “函数调用级别”的切换、上下文切换 1. 函数调用级别的切换 “函数调用级别的切换”是指&#xff1a;像函数调用/返回一样轻量地完成任务切换。 举例说明&#xff1a; 当你在程序中写一个函数调用&#xff1a; funcA() 然后 funcA 执行完后返回&…...

Python爬虫(二):爬虫完整流程

爬虫完整流程详解&#xff08;7大核心步骤实战技巧&#xff09; 一、爬虫完整工作流程 以下是爬虫开发的完整流程&#xff0c;我将结合具体技术点和实战经验展开说明&#xff1a; 1. 目标分析与前期准备 网站技术分析&#xff1a; 使用浏览器开发者工具&#xff08;F12&…...

python如何将word的doc另存为docx

将 DOCX 文件另存为 DOCX 格式&#xff08;Python 实现&#xff09; 在 Python 中&#xff0c;你可以使用 python-docx 库来操作 Word 文档。不过需要注意的是&#xff0c;.doc 是旧的 Word 格式&#xff0c;而 .docx 是新的基于 XML 的格式。python-docx 只能处理 .docx 格式…...

大模型多显卡多服务器并行计算方法与实践指南

一、分布式训练概述 大规模语言模型的训练通常需要分布式计算技术,以解决单机资源不足的问题。分布式训练主要分为两种模式: 数据并行:将数据分片到不同设备,每个设备拥有完整的模型副本 模型并行:将模型分割到不同设备,每个设备处理部分模型计算 现代大模型训练通常结合…...

3403. 从盒子中找出字典序最大的字符串 I

3403. 从盒子中找出字典序最大的字符串 I 题目链接&#xff1a;3403. 从盒子中找出字典序最大的字符串 I 代码如下&#xff1a; class Solution { public:string answerString(string word, int numFriends) {if (numFriends 1) {return word;}string res;for (int i 0;i &…...

vue3+vite项目中使用.env文件环境变量方法

vue3vite项目中使用.env文件环境变量方法 .env文件作用命名规则常用的配置项示例使用方法注意事项在vite.config.js文件中读取环境变量方法 .env文件作用 .env 文件用于定义环境变量&#xff0c;这些变量可以在项目中通过 import.meta.env 进行访问。Vite 会自动加载这些环境变…...

RNN避坑指南:从数学推导到LSTM/GRU工业级部署实战流程

本文较长&#xff0c;建议点赞收藏&#xff0c;以免遗失。更多AI大模型应用开发学习视频及资料&#xff0c;尽在聚客AI学院。 本文全面剖析RNN核心原理&#xff0c;深入讲解梯度消失/爆炸问题&#xff0c;并通过LSTM/GRU结构实现解决方案&#xff0c;提供时间序列预测和文本生成…...