像ChatGPT玩转Excel数据

1.引言
最近ChatGPT的出现,把人工智能又带起了一波浪潮。机器人能否替代人类又成了最近热门的话题。
今天我们推荐的一个玩法和ChatGPT有点不一样。我们的课题是“让用户可以使用自然语言从Excel查询到自己想要的数据”。
要让自然语言可以从Excel中查数据,那我们得做点准备:
需要一个Excel文档
需要一个自然语言查询工具(这里我们推荐Smartbi NLA)
1.1.体验自然语言查询
老规矩,先上效果再说其他。

【使用录屏动画】
2.Excel说明
我们先准备一个Excel,这个数据是模仿一个企业的合同签订表数据造的一份随机数据,有些数字可能不大合理。不合理的地方,请自动忽略 _。
2.1.数据结构说明
2.1.1合同明细表

2.1.2.销售表

2.1.3.地区表

2.1.4.日期维

2.2.表关系图

【表关系图】
2.3.数据示例

【Excel详情】
3.数据导入与建模
数据情况介绍完了,我们要用上述的数据,做一个数据模型,下面主要介绍下建模的过程。
3.1.Excel导入
Smartbi中的Excel数据导入,非常简单,按照向导操作就可以了。
【Excel数据导入】

3.2.建立表关系
3.2.1.第一个表关系
数据导入完成后,我们先建立第一个表关系。鼠标放到《销售表》表上面后,会出现4个小圆圈。选择一个小圆圈,拖动到《合同表》上面,就会自动弹出表关系对话框。我们选择关联字段,然后选择“一对多”关系。

【《销售表》和《合同表》关系建立】

【完整表关系】
3.3.指标、维表和事实表处理
3.3.1.生成指标

【双击“合同金额”转指标】
从事实表中,找到需要转为指标的列,双击,就会自动生成指标。
3.3.2.处理维度
默认情况下,右侧栏的每一个字段,都会默认生成一个维度。但是有些字段(ID、编码等)在正常的查询中我们并不需要,所以建议将不需要的字段隐藏。同时为了让自然语言能够更好的识别到用户语言中的指标和维度,建议在设计模型的时候将指标和维度修改成用户常用的词语。

【隐藏“合同维表”】

【显示“合同名称”】
《合同维表》中,依次显示“合同名称”、“商机类型”、“合同类型”、“行业名称”,这些是需要转成维度的,其他的字段都不需要,所以其他字段都可以隐藏掉。其他表也做同样操作,隐藏掉编码字段。
3.3.3.创建时间维度

【创建时间维度】
在右键“日期”字段,选择“创建时间层次结构”,我们可以创建包含指定层次的时间维结构。

【选择时间层次结构】
根据查询需要,我们选择了“年”、“季”、“月”、“日”,4种层次结构。

【生成的时间层次】
如果觉得默认的名字不好,可以改名。不过为了能更符合常用日期说法,还是建议改下默认名字。如果有特殊需要,也可以修改需要显示的日期格式。

【修改季度名字】

【改名后的时间层次】
3.4.自定义指标
除了合同金额,如果我们还想知道“合同个数”,我们需要对“合同编码”做唯一计数。

【生成“合同个数”指标】
3.5.模型抽取
最后,我们需要对模型进行抽取,将Excel数据加载到高速缓存库中。

【模型抽取】

【点击:抽取并建宽表】
3.6.模型验证
模型做好以后,我们需要验证下模型是否正确。这里可以使用“自助仪表盘”完成模型的验证工作。

【新建-交互式仪表盘】

【查询验证】
把用到的维度和指标都拖上来,看看是否有数据,数据是否正确。
3.7.总结
以上是创建数据模型完整的过程。是不是很简单,手痒的同学可以先试试了。
Smartbi的数据模型建设过程非常简单,全程就是鼠标拖拽就实现了,除了改名,基本不需要使用键盘。更不需要写SQL语句或者其他程序语言。对用户的要求大大降低。就算稍微有点高级的–做计算指标,对用户的要求也只是:了解该指标的计算方法,然后基本也是全程鼠标就可以实现了。总之,使用Smartbi一切都太方便了!
4.自然语言查询
4.1.训练NLA模型
Smartbi自然语言查询,是在“数据模型”之上,再建立了一个知识模型(知识图谱)。这个知识图谱,需要有一个简单的训练过程。不过Smartbi已经把这些工作都包装好了,我们只需要点一个训练按钮就可以实现知识图谱的训练了。

【训练AI图谱】

【选择需要参与训练的维度】
日期维、ID、编码、数字这些一般是不需要参与训练的,也就是只训练有意义的字符串列。

【选择对话式分析-进入自然语言查询】
4.2.查询演示
4.2.1.语义场景自适应

【排名演示场景】
Smartbi的自然语言查询和同类产品有个不一样的地方就是,通常的自然语言查询工具,需要比较完整地说出数据库中的字段名,而Smartbi的自然语言查询是不需要的,用户可以按照常规的说法去说这个词语。系统会根据当前的语言场景匹配最合适的字段。
比如上述例子中的“广州分部合同金额排名前十销售”,系统会根据当前的语句自动识别是想要对“销售姓名”排名还是“销售分部”排名,在这句话中,系统给出的选择是使用“销售姓名”进行排序。
“合同排名”也是同样的意思。这里就不详细展开了。
4.2.2.自动生成计算指标

【动态生成计算指标】
Smartbi自然语言查询,还有一个显著特点是可以自动生成一些常用的时间计算指标(不需要预先在模型中做好)。比如:同比、环比这些。
Smartbi NLA支持的时间计算指标有:
同期比
环比
同期值
前期值
同期增量
前期增量
年累计
年累同比
季累计
季累同比
月累计
月累同比
占比
4.2.3.综合分析案例

【分析案例】
这个演示主要是介绍使用自然语言分析出“广州分部合同金额去年同比下降”的原因。最开始查的是“各分部的合同情况”,然后发现广州分部同比下降了37%。
然后继续问广州分部各行业的情况,只看行业数据看不出问题,我们加上了“同比”和“占比”,发现“占比”比较大的行业(零售、教育、旅游)的合同额都大幅下滑,特别是旅游行业下滑73%。
我们再从月份的角度看,基本看到4月、5月数据都下滑比较严重,到了下半年跌幅也比较巨大。
通过上述示例发现,在做数据分析的时候使用自然语言查询,要比传统的拖拉拽方式快速很多,比手写SQL更是进步了几代。所以使用自然语言做分析,将会给业务分析人员,带来更大的方便性。
👉感兴趣的朋友可点击链接,立即体验Smartbi智能问答
相关文章:
像ChatGPT玩转Excel数据
1.引言 最近ChatGPT的出现,把人工智能又带起了一波浪潮。机器人能否替代人类又成了最近热门的话题。 今天我们推荐的一个玩法和ChatGPT有点不一样。我们的课题是“让用户可以使用自然语言从Excel查询到自己想要的数据”。 要让自然语言可以从Excel中查数据&#…...
云原生之docker容器监控详解(cAdvisor、node exporter、prometheus)
docker容器监控一、前言二、cAdvisor2.1、安装cAdvisor2.2、使用Prometheus监控cAdvisor2.3、cAdvisor暴露的Prometheus指标三、Node Exporter3.1、安装Node Exporter3.2、指标四、Prometheus4.1、安装4.2、规则配置4.3、报警管理器五、grafana一、前言 cAdvisor源码 node exp…...
<Linux>进程概念
文章目录一、什么是进程1.进程概念2.进程描述 – PCB3.task_struct内容分类二、进程的基本操作1.查看进程2.结束进程3.通过系统调用获取进程标示符4.通过系统调用创建子进程(fork)三、进程状态1.普遍的操作系统状态2.Linux操作系统状态四、两种特殊的进程1.僵尸进程2.孤儿进程五…...
数据结构——顺序表
文章目录🐨0. 前言🎈1. 顺序表的概念及定义🪁2. 接口的声明🪄3. 接口的实现🍅3.1 为何使用断言?🍒3.2 初始化与销毁🍓3.3 尾插与尾删🍉3.4 头插与头删🍹3.5 指…...
闪存系统性能优化方向集锦?AC timing? Cache? 多路并发?
1. 从Flash系统的性能提升说起从消费级产品到数据中心企业级场景,NAND Flash凭借其高性能、大容量、低功耗以及低成本等特性大受欢迎,是目前应用最为广泛的半导体非易失存储介质。为了满足业务场景越来越严苛的性能要求,人们想了许多方法来提…...
【每日一题】——网购
🌏博客主页:PH_modest的博客主页 🚩当前专栏:每日一题 💌其他专栏: 🔴 每日反刍 🟢 读书笔记 🟡 C语言跬步积累 🌈座右铭:广积粮,缓称…...
百度终于要出手了?文心一言
文心一言 百度全新一代知识增强大语言模型,文心大模型家族的新成员,能够与人对话互动,回答问题,协助创作,高效便捷地帮助人们获取信息、知识和灵感。 前几天炒的风风火火的ChatGPT,虽然 ChatGPT 很强大&a…...
8年Java架构师面试官教你正确的面试姿势,10W字面试题带你成功上岸大厂
从最开始的面试者变成现在的面试官,工作多年以及在面试中,我经常能体会到,有些面试者确实是认真努力工作,但坦白说表现出的能力水平却不足以通过面试,通常是两方面原因: 1、“知其然不知其所以然”。做了多…...
Mybatis-Plus详解
简介MyBatis-Plus (opens new window)(简称 MP)是一个 MyBatis (opens new window)的增强工具,在 MyBatis 的基础上只做增强不做改变,为简化开发、提高效率而生。特性(官网提供)无侵入:只做增强…...
购物清单(蓝桥杯C/C++省赛)
目录 1 问题描述 2 文件的读取格式 3 代码实现 1 问题描述 小明刚刚找到工作,老板人很好,只是老板夫人很爱购物。老板忙的时候经常让小明帮忙到商场代为购物。小明很厌烦,但又不好推辞。 这不,XX大促销又来了!老板…...
【蓝桥杯集训·每日一题】AcWing 4496. 吃水果
文章目录一、题目1、原题链接2、题目描述二、解题报告1、思路分析2、时间复杂度3、代码详解三、知识风暴求组合数一、题目 1、原题链接 4496. 吃水果 2、题目描述 n 个小朋友站成一排,等着吃水果。 一共有 m 种水果,每种水果的数量都足够多。 现在&…...
selenium(6)-----unittest框架
unittest框架 1)测试固件 1)setUp()是用来初始化测试环境所做的工作 2)tearDown()是用来清理环境所做的工作 2)测试套件 把不同的测试脚本,不同类中的测试用例给组织起来放到一个测试套中执行 3)测试用例的要以test_开头 4)如何使用unittest框架 只需要在脚本中定义…...
统计软件与数据分析--Lesson3
dataframe数据常用python操作dataframe数据常用知识点1.创建dataframe1.1使用字典创建DataFrame:1.2使用列表创建DataFrame:1.3使用numpy数组创建DataFrame:1.4从TXT文件中创建DataFrame:1.5从CSV文件中创建DataFrame:…...
竞赛无人机搭积木式编程——以2022年TI电赛送货无人机一等奖复现为例学习(7月B题)
在学习本教程前,请确保已经学习了前4讲中无人机相关坐标系知识、基础飞行控制函数、激光雷达SLAM定位条件下的室内定点控制、自动飞行支持函数、导航控制函数等入门阶段的先导教程。 同时用户在做二次开发自定义的飞行任务时,可以参照第5讲中2021年国赛植…...
oracle基础操作
oracle基础操作语法: 1、查询会话 SQL> select count(*) from v$session;2、增大连接数 SQL> alter system set processes5000 scope spfile;3、增大会话数 SQL> alter system set sessions7552 scopespfile;4、查询 参数: SQL> sho…...
python爬虫数据写入excel
在Jmeter118中描述了如何将接口请求的响应数据写入到csv中,同样的接口如果采用python写法,会简便很多,主要是用到了python中的pandas库#爬取展台数据import requestsimport pandas as pdurlhttps://ficonline.cfaa.cn/Exhibition/searchExhib…...
优思学院|六西格玛DMAIC,傻傻搞不清?
DMAIC还是搞不清? DMAIC是一个用于过程改进和六西格玛的问题解决方法论。它是以下五个步骤的缩写: 定义(Define):明确问题,设定项目的目标和目的。绘制流程图,并收集数据,以建立未来…...
【Linux】网络编程套接字(下)
🎇Linux: 博客主页:一起去看日落吗分享博主的在Linux中学习到的知识和遇到的问题博主的能力有限,出现错误希望大家不吝赐教分享给大家一句我很喜欢的话: 看似不起波澜的日复一日,一定会在某一天让你看见坚持…...
【Linux网络】网络编程套接字(上)
🎇Linux: 博客主页:一起去看日落吗分享博主的在Linux中学习到的知识和遇到的问题博主的能力有限,出现错误希望大家不吝赐教分享给大家一句我很喜欢的话: 看似不起波澜的日复一日,一定会在某一天让你看见坚持…...
十二、51单片机之DS1302
1、DS1302简介 (1)详情查看数据手册。 (2)管角描述 管教名称功能1Vcc2双供电配置中的主电源供电引脚2X1与标准的32.768kHz晶振相连。用于ds1302记时。3X24GND电源地5CE输入信号,CE信号在读写时必须保持高电平6I/O输入/推挽输出I/O,是三线接口的双向数…...
国防科技大学计算机基础课程笔记02信息编码
1.机内码和国标码 国标码就是我们非常熟悉的这个GB2312,但是因为都是16进制,因此这个了16进制的数据既可以翻译成为这个机器码,也可以翻译成为这个国标码,所以这个时候很容易会出现这个歧义的情况; 因此,我们的这个国…...
LeetCode - 394. 字符串解码
题目 394. 字符串解码 - 力扣(LeetCode) 思路 使用两个栈:一个存储重复次数,一个存储字符串 遍历输入字符串: 数字处理:遇到数字时,累积计算重复次数左括号处理:保存当前状态&a…...
3403. 从盒子中找出字典序最大的字符串 I
3403. 从盒子中找出字典序最大的字符串 I 题目链接:3403. 从盒子中找出字典序最大的字符串 I 代码如下: class Solution { public:string answerString(string word, int numFriends) {if (numFriends 1) {return word;}string res;for (int i 0;i &…...
爬虫基础学习day2
# 爬虫设计领域 工商:企查查、天眼查短视频:抖音、快手、西瓜 ---> 飞瓜电商:京东、淘宝、聚美优品、亚马逊 ---> 分析店铺经营决策标题、排名航空:抓取所有航空公司价格 ---> 去哪儿自媒体:采集自媒体数据进…...
[Java恶补day16] 238.除自身以外数组的乘积
给你一个整数数组 nums,返回 数组 answer ,其中 answer[i] 等于 nums 中除 nums[i] 之外其余各元素的乘积 。 题目数据 保证 数组 nums之中任意元素的全部前缀元素和后缀的乘积都在 32 位 整数范围内。 请 不要使用除法,且在 O(n) 时间复杂度…...
从 GreenPlum 到镜舟数据库:杭银消费金融湖仓一体转型实践
作者:吴岐诗,杭银消费金融大数据应用开发工程师 本文整理自杭银消费金融大数据应用开发工程师在StarRocks Summit Asia 2024的分享 引言:融合数据湖与数仓的创新之路 在数字金融时代,数据已成为金融机构的核心竞争力。杭银消费金…...
永磁同步电机无速度算法--基于卡尔曼滤波器的滑模观测器
一、原理介绍 传统滑模观测器采用如下结构: 传统SMO中LPF会带来相位延迟和幅值衰减,并且需要额外的相位补偿。 采用扩展卡尔曼滤波器代替常用低通滤波器(LPF),可以去除高次谐波,并且不用相位补偿就可以获得一个误差较小的转子位…...
【Linux】Linux安装并配置RabbitMQ
目录 1. 安装 Erlang 2. 安装 RabbitMQ 2.1.添加 RabbitMQ 仓库 2.2.安装 RabbitMQ 3.配置 3.1.启动和管理服务 4. 访问管理界面 5.安装问题 6.修改密码 7.修改端口 7.1.找到文件 7.2.修改文件 1. 安装 Erlang 由于 RabbitMQ 是用 Erlang 编写的,需要先安…...
Java详解LeetCode 热题 100(26):LeetCode 142. 环形链表 II(Linked List Cycle II)详解
文章目录 1. 题目描述1.1 链表节点定义 2. 理解题目2.1 问题可视化2.2 核心挑战 3. 解法一:HashSet 标记访问法3.1 算法思路3.2 Java代码实现3.3 详细执行过程演示3.4 执行结果示例3.5 复杂度分析3.6 优缺点分析 4. 解法二:Floyd 快慢指针法(…...
向量几何的二元性:叉乘模长与内积投影的深层联系
在数学与物理的空间世界中,向量运算构成了理解几何结构的基石。叉乘(外积)与点积(内积)作为向量代数的两大支柱,表面上呈现出截然不同的几何意义与代数形式,却在深层次上揭示了向量间相互作用的…...
