当前位置: 首页 > news >正文

第100+16步 ChatGPT学习:R实现Xgboost分类

基于R 4.2.2版本演示

一、写在前面

有不少大佬问做机器学习分类能不能用R语言,不想学Python咯。

答曰:可!用GPT或者Kimi转一下就得了呗。

加上最近也没啥内容写了,就帮各位搬运一下吧。

二、R代码实现Xgboost分类

(1)导入数据

我习惯用RStudio自带的导入功能:

(2)建立Xgboost模型(默认参数)

# Load necessary libraries
library(caret)
library(pROC)
library(ggplot2)
library(xgboost)# Assume 'data' is your dataframe containing the data
# Set seed to ensure reproducibility
set.seed(123)# Split data into training and validation sets (80% training, 20% validation)
trainIndex <- createDataPartition(data$X, p = 0.8, list = FALSE)
trainData <- data[trainIndex, ]
validData <- data[-trainIndex, ]# Prepare matrices for XGBoost
dtrain <- xgb.DMatrix(data = as.matrix(trainData[, -which(names(trainData) == "X")]), label = trainData$X)
dvalid <- xgb.DMatrix(data = as.matrix(validData[, -which(names(validData) == "X")]), label = validData$X)# Define parameters for XGBoost
params <- list(booster = "gbtree", objective = "binary:logistic", eta = 0.1, gamma = 0, max_depth = 6, min_child_weight = 1, subsample = 0.8, colsample_bytree = 0.8)# Train the XGBoost model
model <- xgb.train(params = params, data = dtrain, nrounds = 100, watchlist = list(eval = dtrain), verbose = 1)# Predict on the training and validation sets
trainPredict <- predict(model, dtrain)
validPredict <- predict(model, dvalid)# Convert predictions to binary using 0.5 as threshold
#trainPredict <- ifelse(trainPredict > 0.5, 1, 0)
#validPredict <- ifelse(validPredict > 0.5, 1, 0)# Calculate ROC curves and AUC values
#trainRoc <- roc(response = trainData$X, predictor = as.numeric(trainPredict))
#validRoc <- roc(response = validData$X, predictor = as.numeric(validPredict))
trainRoc <- roc(response = as.numeric(trainData$X) - 1, predictor = trainPredict)
validRoc <- roc(response = as.numeric(validData$X) - 1, predictor = validPredict)# Plot ROC curves with AUC values
ggplot(data = data.frame(fpr = trainRoc$specificities, tpr = trainRoc$sensitivities), aes(x = 1 - fpr, y = tpr)) +geom_line(color = "blue") +geom_area(alpha = 0.2, fill = "blue") +geom_abline(slope = 1, intercept = 0, linetype = "dashed", color = "black") +ggtitle("Training ROC Curve") +xlab("False Positive Rate") +ylab("True Positive Rate") +annotate("text", x = 0.5, y = 0.1, label = paste("Training AUC =", round(auc(trainRoc), 2)), hjust = 0.5, color = "blue")ggplot(data = data.frame(fpr = validRoc$specificities, tpr = validRoc$sensitivities), aes(x = 1 - fpr, y = tpr)) +geom_line(color = "red") +geom_area(alpha = 0.2, fill = "red") +geom_abline(slope = 1, intercept = 0, linetype = "dashed", color = "black") +ggtitle("Validation ROC Curve") +xlab("False Positive Rate") +ylab("True Positive Rate") +annotate("text", x = 0.5, y = 0.2, label = paste("Validation AUC =", round(auc(validRoc), 2)), hjust = 0.5, color = "red")# Calculate confusion matrices based on 0.5 cutoff for probability
confMatTrain <- table(trainData$X, trainPredict >= 0.5)
confMatValid <- table(validData$X, validPredict >= 0.5)# Function to plot confusion matrix using ggplot2
plot_confusion_matrix <- function(conf_mat, dataset_name) {conf_mat_df <- as.data.frame(as.table(conf_mat))colnames(conf_mat_df) <- c("Actual", "Predicted", "Freq")p <- ggplot(data = conf_mat_df, aes(x = Predicted, y = Actual, fill = Freq)) +geom_tile(color = "white") +geom_text(aes(label = Freq), vjust = 1.5, color = "black", size = 5) +scale_fill_gradient(low = "white", high = "steelblue") +labs(title = paste("Confusion Matrix -", dataset_name, "Set"), x = "Predicted Class", y = "Actual Class") +theme_minimal() +theme(axis.text.x = element_text(angle = 45, hjust = 1), plot.title = element_text(hjust = 0.5))print(p)
}# Now call the function to plot and display the confusion matrices
plot_confusion_matrix(confMatTrain, "Training")
plot_confusion_matrix(confMatValid, "Validation")# Extract values for calculations
a_train <- confMatTrain[1, 1]
b_train <- confMatTrain[1, 2]
c_train <- confMatTrain[2, 1]
d_train <- confMatTrain[2, 2]a_valid <- confMatValid[1, 1]
b_valid <- confMatValid[1, 2]
c_valid <- confMatValid[2, 1]
d_valid <- confMatValid[2, 2]# Training Set Metrics
acc_train <- (a_train + d_train) / sum(confMatTrain)
error_rate_train <- 1 - acc_train
sen_train <- d_train / (d_train + c_train)
sep_train <- a_train / (a_train + b_train)
precision_train <- d_train / (b_train + d_train)
F1_train <- (2 * precision_train * sen_train) / (precision_train + sen_train)
MCC_train <- (d_train * a_train - b_train * c_train) / sqrt((d_train + b_train) * (d_train + c_train) * (a_train + b_train) * (a_train + c_train))
auc_train <- roc(response = trainData$X, predictor = trainPredict)$auc# Validation Set Metrics
acc_valid <- (a_valid + d_valid) / sum(confMatValid)
error_rate_valid <- 1 - acc_valid
sen_valid <- d_valid / (d_valid + c_valid)
sep_valid <- a_valid / (a_valid + b_valid)
precision_valid <- d_valid / (b_valid + d_valid)
F1_valid <- (2 * precision_valid * sen_valid) / (precision_valid + sen_valid)
MCC_valid <- (d_valid * a_valid - b_valid * c_valid) / sqrt((d_valid + b_valid) * (d_valid + c_valid) * (a_valid + b_valid) * (a_valid + c_valid))
auc_valid <- roc(response = validData$X, predictor = validPredict)$auc# Print Metrics
cat("Training Metrics\n")
cat("Accuracy:", acc_train, "\n")
cat("Error Rate:", error_rate_train, "\n")
cat("Sensitivity:", sen_train, "\n")
cat("Specificity:", sep_train, "\n")
cat("Precision:", precision_train, "\n")
cat("F1 Score:", F1_train, "\n")
cat("MCC:", MCC_train, "\n")
cat("AUC:", auc_train, "\n\n")cat("Validation Metrics\n")
cat("Accuracy:", acc_valid, "\n")
cat("Error Rate:", error_rate_valid, "\n")
cat("Sensitivity:", sen_valid, "\n")
cat("Specificity:", sep_valid, "\n")
cat("Precision:", precision_valid, "\n")
cat("F1 Score:", F1_valid, "\n")
cat("MCC:", MCC_valid, "\n")
cat("AUC:", auc_valid, "\n")

在R语言中,训练Xgboost模型时,可调参数很多:

1)通用参数

这些参数用于控制XGBoost的整体功能:

①booster: 选择每一步的模型类型,常用的有:

  1. gbtree:基于树的模型(默认)
  2. gblinear:线性模型
  3. dart:Dropouts meet Multiple Additive Regression Trees

②nthread: 并行线程数,默认为最大可用线程数。

③verbosity: 打印消息的详细程度,0 (silent), 1 (warning), 2 (info), 3 (debug)。

2)Booster 参数:

控制每一步提升(booster)的行为:

①eta (或 learning_rate): 学习率,控制每步的收缩以防止过拟合。

②min_child_weight: 决定最小叶子节点样本权重和,用于控制过拟合。

③max_depth: 树的最大深度,限制树的增长以避免过拟合。

④max_leaf_nodes: 最大叶子节点数。

⑤gamma (或 min_split_loss): 分裂节点所需的最小损失函数下降值。

⑥subsample: 训练每棵树时用于随机采样的部分数据比例。

⑦colsample_bytree/colsample_bylevel/colsample_bynode: 构建树时每个级别的特征采样比例。

⑧lambda (或 reg_lambda): L2 正则化项权重。

⑨alpha (或 reg_alpha): L1 正则化项权重。

⑩scale_pos_weight: 在类别不平衡的情况下加权正类的权重。

n_estimators / nrounds:Boosting 过程中的树的数量,或者说是提升迭代的轮数。每轮迭代通常会产生一个新的模型(通常是一棵树)。

3)学习任务参数

用于控制学习任务和相应的学习目标:

①objective: 定义学习任务和相应的学习目标,如:

②binary:logistic: 二分类的逻辑回归,返回预测概率。

③multi:softmax: 多分类的softmax,需要设置 num_class(类别数)。

④reg:squarederror: 回归任务的平方误差。

⑤eval_metric: 验证数据的评估指标,如 rmse、mae、logloss、error (分类错误率)、auc 等。

⑥seed: 随机数种子,用于结果的可重复性。

5)DART Booster特有参数

当 booster 设置为 dart 时:

①sample_type: 采样类型。

②normalize_type: 归一化类型。

③rate_drop: 每次迭代中树的丢弃率。

④skip_drop: 跳过丢弃的概率。

在随便设置了一些参数值,结果如下:

从AUC来看,Xgboost随便一跑直接就过拟合了,验证集的性能相比训练集差距挺大的。得好好调参调参才行。

三、Xgboost手动调参原则

调参的一般策略是,可以先使用网格搜索(Grid Search)、随机搜索(Random Search)或更高级的方法如贝叶斯优化来粗略地确定合适的参数范围,然后在这些范围内细致地调整和验证,以找到最优的模型配置。

主要调的参数:max_depth、min_child_weight、gamma、subsample、colsample_bytree / colsample_bylevel / colsample_bynode、eta、lambda、alpha和n_estimators (或 nrounds)。

max_depth(最大深度):通常范围是3到10。较大的深度可能会导致过拟合,尤其是在小数据集上。

min_child_weight(最小子节点权重):有助于控制过拟合。面对高度不平衡的类别时,可以适当增加此值。

gamma(伽马):从0开始调整,根据控制过拟合的需要逐渐增加。

subsample、colsample_bytree/colsample_bylevel/colsample_bynode(子采样率、按树/层/节点的列采样率):通常范围从0.5到1。这些参数控制了每一步的数据子采样。

eta(学习率):较小的值可以使训练更加稳健,但需要更多的训练迭代。

lambda 和 alpha(L2和L1正则化项):在成本函数中添加正则化项。0到10的范围通常效果不错。

nrounds(树的数量,或迭代次数):更多的树可以模拟更复杂的模式,但也可能导致过拟合。

# Load necessary libraries
library(caret)
library(pROC)
library(ggplot2)
library(xgboost)# Assume 'data' is your dataframe containing the data
# Set seed to ensure reproducibility
set.seed(123)# Convert the target variable to factor if not already
data$X <- factor(data$X)# Split data into training and validation sets (80% training, 20% validation)
trainIndex <- createDataPartition(data$X, p = 0.8, list = FALSE)
trainData <- data[trainIndex, ]
validData <- data[-trainIndex, ]# Prepare matrices for XGBoost
dtrain <- xgb.DMatrix(data = as.matrix(trainData[, -which(names(trainData) == "X")]), label = as.numeric(trainData$X) - 1)
dvalid <- xgb.DMatrix(data = as.matrix(validData[, -which(names(validData) == "X")]), label = as.numeric(validData$X) - 1)# Define parameter grid
depths <- c(4, 6, 10)
weights <- c(1, 5, 10)
gammas <- c(0, 0.2, 0.5)
subsamples <- c(0.5, 0.8, 0.9)
colsamples <- c(0.5, 0.8, 0.9)
etas <- c(0.01, 0.1, 0.2)
lambdas <- c(0, 5, 10)
alphas <- c(0, 1, 5)
nrounds <- c(100, 250, 500)best_auc <- 0
best_params <- list()# Loop through parameter grid
for (max_depth in depths) {for (min_child_weight in weights) {for (gamma in gammas) {for (subsample in subsamples) {for (colsample_bytree in colsamples) {for (eta in etas) {for (lambda in lambdas) {for (alpha in alphas) {for (nround in nrounds) {# Set parameters for this iterationparams <- list(booster = "gbtree",objective = "binary:logistic",eta = eta,gamma = gamma,max_depth = max_depth,min_child_weight = min_child_weight,subsample = subsample,colsample_bytree = colsample_bytree,lambda = lambda,alpha = alpha)# Train the modelmodel <- xgb.train(params = params, data = dtrain, nrounds = nround, watchlist = list(eval = dtrain), verbose = 0)# Predict on the validation setvalidPredict <- predict(model, dvalid)validPredictBinary <- ifelse(validPredict > 0.5, 1, 0)# Calculate AUCvalidRoc <- roc(response = as.numeric(validData$X) - 1, predictor = validPredictBinary)auc_score <- auc(validRoc)# Update best model if current AUC is betterif (auc_score > best_auc) {best_auc <- auc_scorebest_params <- paramsbest_params$nrounds <- nround}}}}}}}}}
}# Print the best AUC and corresponding parameters
print(paste("Best AUC:", best_auc))
print("Best Parameters:")
print(best_params)# After parameter tuning, train the model with best parameters
model <- xgb.train(params = best_params, data = dtrain, nrounds = best_params$nrounds, watchlist = list(eval = dtrain), verbose = 0)# Predict on the training and validation sets using the final model
trainPredict <- predict(model, dtrain)
validPredict <- predict(model, dvalid)# Convert predictions to binary using 0.5 as threshold
#trainPredictBinary <- ifelse(trainPredict > 0.5, 1, 0)
#validPredictBinary <- ifelse(validPredict > 0.5, 1, 0)# Calculate ROC curves and AUC values
#trainRoc <- roc(response = trainData$X, predictor = as.numeric(trainPredict))
#validRoc <- roc(response = validData$X, predictor = as.numeric(validPredict))
trainRoc <- roc(response = as.numeric(trainData$X) - 1, predictor = trainPredict)
validRoc <- roc(response = as.numeric(validData$X) - 1, predictor = validPredict)# Plot ROC curves with AUC values
ggplot(data = data.frame(fpr = trainRoc$specificities, tpr = trainRoc$sensitivities), aes(x = 1 - fpr, y = tpr)) +geom_line(color = "blue") +geom_area(alpha = 0.2, fill = "blue") +geom_abline(slope = 1, intercept = 0, linetype = "dashed", color = "black") +ggtitle("Training ROC Curve") +xlab("False Positive Rate") +ylab("True Positive Rate") +annotate("text", x = 0.5, y = 0.1, label = paste("Training AUC =", round(auc(trainRoc), 2)), hjust = 0.5, color = "blue")ggplot(data = data.frame(fpr = validRoc$specificities, tpr = validRoc$sensitivities), aes(x = 1 - fpr, y = tpr)) +geom_line(color = "red") +geom_area(alpha = 0.2, fill = "red") +geom_abline(slope = 1, intercept = 0, linetype = "dashed", color = "black") +ggtitle("Validation ROC Curve") +xlab("False Positive Rate") +ylab("True Positive Rate") +annotate("text", x = 0.5, y = 0.2, label = paste("Validation AUC =", round(auc(validRoc), 2)), hjust = 0.5, color = "red")# Calculate confusion matrices based on 0.5 cutoff for probability
confMatTrain <- table(trainData$X, trainPredict >= 0.5)
confMatValid <- table(validData$X, validPredict >= 0.5)# Function to plot confusion matrix using ggplot2
plot_confusion_matrix <- function(conf_mat, dataset_name) {conf_mat_df <- as.data.frame(as.table(conf_mat))colnames(conf_mat_df) <- c("Actual", "Predicted", "Freq")p <- ggplot(data = conf_mat_df, aes(x = Predicted, y = Actual, fill = Freq)) +geom_tile(color = "white") +geom_text(aes(label = Freq), vjust = 1.5, color = "black", size = 5) +scale_fill_gradient(low = "white", high = "steelblue") +labs(title = paste("Confusion Matrix -", dataset_name, "Set"), x = "Predicted Class", y = "Actual Class") +theme_minimal() +theme(axis.text.x = element_text(angle = 45, hjust = 1), plot.title = element_text(hjust = 0.5))print(p)
}# Now call the function to plot and display the confusion matrices
plot_confusion_matrix(confMatTrain, "Training")
plot_confusion_matrix(confMatValid, "Validation")# Extract values for calculations
a_train <- confMatTrain[1, 1]
b_train <- confMatTrain[1, 2]
c_train <- confMatTrain[2, 1]
d_train <- confMatTrain[2, 2]a_valid <- confMatValid[1, 1]
b_valid <- confMatValid[1, 2]
c_valid <- confMatValid[2, 1]
d_valid <- confMatValid[2, 2]# Training Set Metrics
acc_train <- (a_train + d_train) / sum(confMatTrain)
error_rate_train <- 1 - acc_train
sen_train <- d_train / (d_train + c_train)
sep_train <- a_train / (a_train + b_train)
precision_train <- d_train / (b_train + d_train)
F1_train <- (2 * precision_train * sen_train) / (precision_train + sen_train)
MCC_train <- (d_train * a_train - b_train * c_train) / sqrt((d_train + b_train) * (d_train + c_train) * (a_train + b_train) * (a_train + c_train))
auc_train <- roc(response = trainData$X, predictor = trainPredict)$auc# Validation Set Metrics
acc_valid <- (a_valid + d_valid) / sum(confMatValid)
error_rate_valid <- 1 - acc_valid
sen_valid <- d_valid / (d_valid + c_valid)
sep_valid <- a_valid / (a_valid + b_valid)
precision_valid <- d_valid / (b_valid + d_valid)
F1_valid <- (2 * precision_valid * sen_valid) / (precision_valid + sen_valid)
MCC_valid <- (d_valid * a_valid - b_valid * c_valid) / sqrt((d_valid + b_valid) * (d_valid + c_valid) * (a_valid + b_valid) * (a_valid + c_valid))
auc_valid <- roc(response = validData$X, predictor = validPredict)$auc# Print Metrics
cat("Training Metrics\n")
cat("Accuracy:", acc_train, "\n")
cat("Error Rate:", error_rate_train, "\n")
cat("Sensitivity:", sen_train, "\n")
cat("Specificity:", sep_train, "\n")
cat("Precision:", precision_train, "\n")
cat("F1 Score:", F1_train, "\n")
cat("MCC:", MCC_train, "\n")
cat("AUC:", auc_train, "\n\n")cat("Validation Metrics\n")
cat("Accuracy:", acc_valid, "\n")
cat("Error Rate:", error_rate_valid, "\n")
cat("Sensitivity:", sen_valid, "\n")
cat("Specificity:", sep_valid, "\n")
cat("Precision:", precision_valid, "\n")
cat("F1 Score:", F1_valid, "\n")
cat("MCC:", MCC_valid, "\n")
cat("AUC:", auc_valid, "\n")

结果输出:

以上是找到的相对最优参数组合,看看具体性能:

似乎有点提升,过拟合没那么明显了。验证集的性能也有所提高。

有兴趣可以继续调参。

五、最后

数据嘛:

链接:https://pan.baidu.com/s/1rEf6JZyzA1ia5exoq5OF7g?pwd=x8xm

提取码:x8xm

相关文章:

第100+16步 ChatGPT学习:R实现Xgboost分类

基于R 4.2.2版本演示 一、写在前面 有不少大佬问做机器学习分类能不能用R语言&#xff0c;不想学Python咯。 答曰&#xff1a;可&#xff01;用GPT或者Kimi转一下就得了呗。 加上最近也没啥内容写了&#xff0c;就帮各位搬运一下吧。 二、R代码实现Xgboost分类 &#xff08…...

【操作系统】定时器(Timer)的实现

这里写目录标题 定时器一、定时器是什么二、标准库中的定时器三、实现定时器 定时器 一、定时器是什么 定时器也是软件开发中的⼀个重要组件.类似于⼀个"闹钟".达到⼀个设定的时间之后,就执行某个指定 好的代码. 定时器是⼀种实际开发中⾮常常用的组件. ⽐如⽹络通…...

鸿蒙Navigation路由能力汇总

基本使用步骤&#xff1a; 1、新增配置文件router_map&#xff1a; 2、在moudle.json5中添加刚才新增的router_map配置&#xff1a; 3、使用方法&#xff1a; 属性汇总&#xff1a; https://developer.huawei.com/consumer/cn/doc/harmonyos-references/ts-basic-compone…...

​1:1公有云能力整体输出,腾讯云“七剑”下云端

【全球云观察 &#xff5c; 科技热点关注】 曾几何时&#xff0c;云计算技术的兴起&#xff0c;为千行万业的数字化创新带来了诸多新机遇&#xff0c;同时也催生了新产业新业态新模式&#xff0c;激发出高质量发展的科技新动能。很显然&#xff0c;如今的云创新已成为高质量发…...

【iOS】APP仿写——网易云音乐

网易云音乐 启动页发现定时器控制轮播图UIButtonConfiguration 发现换头像 我的总结 启动页 这里我的启动页是使用Xcode自带的启动功能&#xff0c;将图片放置在LaunchScreen中即可。这里也可以通过定时器控制&#xff0c;来实现启动的效果 效果图&#xff1a; 这里放一篇大…...

react 快速入门思维导图

在掌握了react中一下的几个步骤和语法&#xff0c;基本上就可以熟练的使用react了。 1、组件的使用。react创建组件主要是类组件和函数式组件&#xff0c;类组件有生命周期&#xff0c;而函数式组件没有。 2、jsx语法。react主要使用jsx语法&#xff0c;需要使用babel和webpa…...

微软研究人员为电子表格应用开发了专用人工智能LLM

微软的 Copilot 生成式人工智能助手现已成为该公司许多软件应用程序的一部分。其中包括 Excel 电子表格应用程序&#xff0c;用户可以在其中输入文本提示来帮助处理某些选项。微软的一组研究人员一直在研究一种新的人工智能大型语言模型&#xff0c;这种模型是专门为 Excel、Go…...

[算法题]两个链表的第一个公共结点

题目链接: 两个链表的第一个公共结点 图示: 两个链表如果长度一致, 那么两人同时一人走一步, 如果存在公共结点, 迟早会相遇, 但是如果长度不一致单存在公共结点, 两人同时一人走一步不会相遇, 此时定义两个变量, node1 和 node2, 这两个变量分别从 x1 和 x2 开始走, 当其走完…...

MySQL事务管理(上)

目录 前言 CURD不加控制&#xff0c;会有什么问题&#xff1f; CURD满足什么属性&#xff0c;能解决上述问题&#xff1f; 事务 什么是事务&#xff1f; 为什么会出现事务 事务的版本支持 事务提交方式 查看事务提交方式 改变 MySQL 的自动提交模式: 事务常见操作方式 前…...

HTML2048小游戏

源代码在效果图后面 效果图 源代码 <!DOCTYPE html> <html lang"zh-CN"><head><meta charset"UTF-8"><meta name"viewport" content"widthdevice-width, initial-scale1.0"><title>2048 Game&l…...

为 android编译 luajit库、 交叉编译

时间&#xff1a;20200719 本机环境&#xff1a;iMac2017 macOS11.4 参考: 官方的文档&#xff1a;Use the NDK with other build systems 写在前边&#xff1a;交叉编译跟普通编译类似&#xff0c;无非是利用特殊的编译器、链接器生成动态或静态库; make 本质上是按照 Make…...

【音视频】音频重采样

文章目录 前言音频重采样的基本概念音频重采样的原因1. 设备兼容性2. 文件大小和带宽3. 音质优化4. 标准化和规范5. 多媒体同步6. 降低处理负载重采样的注意事项 总结 前言 音频重采样是指将音频文件的采样率转换成另一种采样率的过程。这在音频处理和传输中是一个常见且重要的…...

卷积神经网络学习问题总结

问题一&#xff1a; 深度学习中的损失函数和应用场景 回归任务&#xff1a; 均方误差函数&#xff08;MSE&#xff09;适用于回归任务&#xff0c;如预测房价、预测股票价格等。 import torch.nn as nn loss_fn nn.MSELoss() 分类任务&#xff1a; 交叉熵损失函数&…...

嵌入式面试总结

C语言中struct和union的区别 struct和union都是常见的复合结构。 结构体和联合体虽然都是由多个不同的数据类型成员组成的&#xff0c;但不同之处在于联合体中所有成员共用一块地址空间&#xff0c;即联合体只存放了一个被选中的成员&#xff0c;结构体中所有成员占用空间是累…...

超简单安装指定版本的clickhouse

超简单安装指定版本的clickhouse 命令执行shell脚本 idea连接 命令执行 参考官网 # 下载脚本 wget https://raw.githubusercontent.com/183461750/doc-record/d988dced891d70b23c153a3bbfecee67902a3757/middleware/data/clickhouse/clickhouse-install.sh # 执行安装脚本(中…...

FlowUs横向对比几款笔记应用的优势所在

FlowUs作为一个本土化的生产力工具&#xff0c;在中国市场的环境下相对于Notion有其独特的优势&#xff0c;尤其是在稳定性和模板适应性方面。 尽管Notion在笔记和生产力工具领域享有极高的声誉&#xff0c;拥有着诸多创新功能和强大的生态系统&#xff0c;但它并不一定适合每…...

收银系统源码-千呼新零售收银视频介绍

千呼新零售2.0系统是零售行业连锁店一体化收银系统&#xff0c;包括线下收银线上商城连锁店管理ERP管理商品管理供应商管理会员营销等功能为一体&#xff0c;线上线下数据全部打通。 适用于商超、便利店、水果、生鲜、母婴、服装、零食、百货、宠物等连锁店使用。 详细介绍请…...

从Catalog说到拜义父-《分析模式》漫谈11

DDD领域驱动设计批评文集 做强化自测题获得“软件方法建模师”称号 《软件方法》各章合集 “Analysis Patterns”的Preface&#xff08;前言&#xff09;有这么一句&#xff1a; This book is thus a catalog, rather than a book to be read from cover to cover. 2004&am…...

Qt判定鼠标是否在该多边形的线条上

要判断鼠标是否在由QPainterPath或一系列QPointF点定义的多边形的线条上&#xff0c;你可以使用以下步骤&#xff1a; 获取鼠标当前位置&#xff1a;在鼠标事件中&#xff0c;使用QMouseEvent的pos()方法获取鼠标的当前位置。 检查点与线段的距离&#xff1a;遍历多边形的每条…...

【笔记:3D航路规划算法】一、随机搜索锚点(python实现,讲解思路)

目录 关键概念3D路径规划算法1. A*算法2. 快速随机锚点1. 初始化&#xff1a;2. 实例化搜索算法&#xff1a;3. 路径生成&#xff1a;4. 绘制图像&#xff1a; 3D路径规划是在三维空间中寻找从起点到终点的最短或最优路径的一种技术。它广泛应用于无人机导航、机器人运动规划、…...

日语学习-日语知识点小记-构建基础-JLPT-N4阶段(33):にする

日语学习-日语知识点小记-构建基础-JLPT-N4阶段(33):にする 1、前言(1)情况说明(2)工程师的信仰2、知识点(1) にする1,接续:名词+にする2,接续:疑问词+にする3,(A)は(B)にする。(2)復習:(1)复习句子(2)ために & ように(3)そう(4)にする3、…...

阿里云ACP云计算备考笔记 (5)——弹性伸缩

目录 第一章 概述 第二章 弹性伸缩简介 1、弹性伸缩 2、垂直伸缩 3、优势 4、应用场景 ① 无规律的业务量波动 ② 有规律的业务量波动 ③ 无明显业务量波动 ④ 混合型业务 ⑤ 消息通知 ⑥ 生命周期挂钩 ⑦ 自定义方式 ⑧ 滚的升级 5、使用限制 第三章 主要定义 …...

第25节 Node.js 断言测试

Node.js的assert模块主要用于编写程序的单元测试时使用&#xff0c;通过断言可以提早发现和排查出错误。 稳定性: 5 - 锁定 这个模块可用于应用的单元测试&#xff0c;通过 require(assert) 可以使用这个模块。 assert.fail(actual, expected, message, operator) 使用参数…...

视频字幕质量评估的大规模细粒度基准

大家读完觉得有帮助记得关注和点赞&#xff01;&#xff01;&#xff01; 摘要 视频字幕在文本到视频生成任务中起着至关重要的作用&#xff0c;因为它们的质量直接影响所生成视频的语义连贯性和视觉保真度。尽管大型视觉-语言模型&#xff08;VLMs&#xff09;在字幕生成方面…...

反射获取方法和属性

Java反射获取方法 在Java中&#xff0c;反射&#xff08;Reflection&#xff09;是一种强大的机制&#xff0c;允许程序在运行时访问和操作类的内部属性和方法。通过反射&#xff0c;可以动态地创建对象、调用方法、改变属性值&#xff0c;这在很多Java框架中如Spring和Hiberna…...

NLP学习路线图(二十三):长短期记忆网络(LSTM)

在自然语言处理(NLP)领域,我们时刻面临着处理序列数据的核心挑战。无论是理解句子的结构、分析文本的情感,还是实现语言的翻译,都需要模型能够捕捉词语之间依时序产生的复杂依赖关系。传统的神经网络结构在处理这种序列依赖时显得力不从心,而循环神经网络(RNN) 曾被视为…...

在鸿蒙HarmonyOS 5中使用DevEco Studio实现录音机应用

1. 项目配置与权限设置 1.1 配置module.json5 {"module": {"requestPermissions": [{"name": "ohos.permission.MICROPHONE","reason": "录音需要麦克风权限"},{"name": "ohos.permission.WRITE…...

Spring AI与Spring Modulith核心技术解析

Spring AI核心架构解析 Spring AI&#xff08;https://spring.io/projects/spring-ai&#xff09;作为Spring生态中的AI集成框架&#xff0c;其核心设计理念是通过模块化架构降低AI应用的开发复杂度。与Python生态中的LangChain/LlamaIndex等工具类似&#xff0c;但特别为多语…...

佰力博科技与您探讨热释电测量的几种方法

热释电的测量主要涉及热释电系数的测定&#xff0c;这是表征热释电材料性能的重要参数。热释电系数的测量方法主要包括静态法、动态法和积分电荷法。其中&#xff0c;积分电荷法最为常用&#xff0c;其原理是通过测量在电容器上积累的热释电电荷&#xff0c;从而确定热释电系数…...

scikit-learn机器学习

# 同时添加如下代码, 这样每次环境(kernel)启动的时候只要运行下方代码即可: # Also add the following code, # so that every time the environment (kernel) starts, # just run the following code: import sys sys.path.append(/home/aistudio/external-libraries)机…...