yolo5图片视频、摄像头推理demo
yolo5图片、视频推理demo
图片
import torch# 加载预训练模型
model = torch.hub.load('./yolo5', 'custom', path='yolov5s.pt', source='local')# 加载图片
img = '1.jpg'# 进行推理
results = model(img)# 解析结果
detections = results.xyxy[0].cpu().numpy() # [x1, y1, x2, y2, confidence, class]# 输出结果
for detection in detections:x1, y1, x2, y2, confidence, cls = detectionprint(f"Class: {model.names[int(cls)]}, Confidence: {confidence:.2f}, Box: [{x1}, {y1}, {x2}, {y2}]")# 显示结果
results.show()
视频
import cv2
import torch# 加载预训练模型
model = torch.hub.load('../yolo5', 'custom', path='yolov5s.pt', source='local')# 加载视频
video_path = '1.mp4'
cap = cv2.VideoCapture(video_path)# 获取视频的宽度、高度和帧率
width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
fps = cap.get(cv2.CAP_PROP_FPS)# 定义视频写入对象
output_path = 'output_video.mp4'
fourcc = cv2.VideoWriter_fourcc(*'mp4v') # 编码格式
out = cv2.VideoWriter(output_path, fourcc, fps, (width, height))while cap.isOpened():ret, frame = cap.read()if not ret:break# 将帧转换为RGB格式img_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)# 进行推理results = model(img_rgb)# 解析结果detections = results.xyxy[0].cpu().numpy() # [x1, y1, x2, y2, confidence, class]# 在帧上绘制检测结果并打印坐标for detection in detections:x1, y1, x2, y2, confidence, cls = detectionlabel = f"{model.names[int(cls)]} {confidence:.2f}"cv2.rectangle(frame, (int(x1), int(y1)), (int(x2), int(y2)), (255, 0, 0), 2)cv2.putText(frame, label, (int(x1), int(y1) - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.9, (255, 0, 0), 2)# 打印目标的坐标和类别print(f"Class: {model.names[int(cls)]}, Confidence: {confidence:.2f}, Box: [{x1}, {y1}, {x2}, {y2}]")# 显示结果cv2.imshow('YOLOv5 Detection', frame)# 写入帧到输出视频out.write(frame)# 按 'q' 键退出实时显示if cv2.waitKey(1) & 0xFF == ord('q'):break# 释放资源
cap.release()
out.release()
cv2.destroyAllWindows()
摄像头
import torch
import cv2
import numpy as np
import time# 加载预训练模型
model = torch.hub.load('../yolov5-master', 'custom', path='yolo_test/yolo_test-gpu7/weights/best.pt', source='local')# 打开摄像头
cap = cv2.VideoCapture(0)# 检查摄像头是否成功打开
if not cap.isOpened():print("Error: Could not open video.")exit()# 初始化计时器
prev_time = time.time()# 进行实时检测
while True:# 读取摄像头帧ret, frame = cap.read()if not ret:print("Error: Failed to capture image")break# 将帧转换为YOLOv5模型需要的格式results = model(frame)# 解析结果detections = results.xyxy[0].cpu().numpy() # [x1, y1, x2, y2, confidence, class]# 在帧上绘制检测结果for detection in detections:x1, y1, x2, y2, confidence, cls = detectionlabel = f"{model.names[int(cls)]} {confidence:.2f}"cv2.rectangle(frame, (int(x1), int(y1)), (int(x2), int(y2)), (0, 255, 0), 2)cv2.putText(frame, label, (int(x1), int(y1) - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.9, (36, 255, 12), 2)# 计算并显示帧率current_time = time.time()fps = 1 / (current_time - prev_time)prev_time = current_timecv2.putText(frame, f"FPS: {fps:.2f}", (10, 30), cv2.FONT_HERSHEY_SIMPLEX, 1, (255, 0, 0), 2)# 显示结果cv2.imshow('YOLOv5 Real-Time Detection', frame)# 按 'q' 键退出循环if cv2.waitKey(1) & 0xFF == ord('q'):break# 释放摄像头并关闭所有窗口
cap.release()
cv2.destroyAllWindows()
相关文章:

yolo5图片视频、摄像头推理demo
yolo5图片、视频推理demo 图片 import torch# 加载预训练模型 model torch.hub.load(./yolo5, custom, pathyolov5s.pt, sourcelocal)# 加载图片 img 1.jpg# 进行推理 results model(img)# 解析结果 detections results.xyxy[0].cpu().numpy() # [x1, y1, x2, y2, confid…...
Scala学习笔记19: 隐式转换和隐式参数
目录 第十九章 隐式转换和隐式参数1- 隐式转换1. 隐式准换函数: 施展魔法的咒语2. 隐式类: 为已有类型添加魔法3. 隐式转换规则: 魔法生效的条件4. 举例说明: 见证魔法的时刻5. 注意事项: 谨慎使用魔法 2. 隐式参数1. 语义: 隐藏在背后的参数2. 使用 隐式参数的方式2.1 隐式值:…...

用户登录安全是如何保证的?如何保证用户账号、密码安全?
1.HTTP协议直接传输密码(无加密) 前端 直接发送HTTP请求(无加密),攻击者可直接捕获网络包,看到下面的明文信息 因此,使用HTTP协议传输会直接暴露用户敏感信息。 2.HTTPS协议直接传输密码&…...

Java 写一个可以持续发送消息的socket服务端
前言 最近在学习flink, 为了模仿一个持续的无界的数据源, 所以需要一个可以持续发送消息的socket服务端. 先上效果图 效果图 socket服务端可以持续的发送消息, flink端是一个统计单词出现总数的消费端,效果图如下 源代码 flink的消费端就不展示了, 需要引入一些依赖和版本…...
Ubuntu2204搭建ceph17
Ceph 环境初始化搭建Ceph 本次实验基于VMware17 节点IPstorage01192.168.200.161storage01192.168.200.162storage01192.168.200.163 环境初始化 初始化基础环境,三节点执行 #!/bin/bash# 定义节点信息 NODES("192.168.200.161 storage01 root" "…...
Druid 面试题及答案整理,最新面试题
Druid连接池在项目中有哪些优势? 1、高性能: Druid连接池在性能方面进行了大量优化,可以快速回收和分配数据库连接,减少数据库访问延迟。 2、实时监控: 提供Druid Monitor监控功能,可以实时监控数据库访问性能和连接池状态,便于及时发现和解决问题。 3、扩展性强: 支持…...

数据库基础与安装MYSQL数据库
一、数据库管理系统DBMS 数据库技术是计算机科学的核心技术之一,具有完备的理论基础。使用数据库可以高效且条理分明地存储数据,使人们能够更加迅速、方便地管理数据 1.可以结构化存储大量的数据信息,方便用户进行有效的检索和访问 2.可以…...

昇思25天学习打卡营第18天| DCGAN生成漫画头像
DCGAN,全称深度卷积对抗生成网络(Deep Convolutional Generative Adversarial Networks),是一种通过对抗训练生成图像的技术。它在判别器和生成器中都使用了卷积和转置卷积层。 训练分为两个部分:训练判别器和训练生成…...

【面试八股文】计算机操作系统
参考:大佬图解文章 → 小林coding 简介:之前在学习小林大佬的八股文时,摘录了一些个人认为比较重要的内容,方便后续自己复习。【持续更新ing ~💯】 注:加五角星标注的,是当前掌握不牢固的&…...
宝塔Wordpress 插件 Redis object cache 导致内存很高 80%以上的原因和解决
查看内存前X 使用以下命令查看前10,修改10数字即可查看前X ps aux | head -1;ps aux |grep -v PID |sort -rn -k 4 | head -10 查看cpu占用 查看前10 ps aux | head -1;ps aux |grep -v PID |sort -rn -k 3 | head -10 原因是 4GiB 内存的服务器,Redis会…...

node解析Excel中的考试题并实现在线做题功能
1、背景 最近公司安排业务技能考试,下发excel文件的题库,在excel里查看并不是很方便,就想着像学习驾考题目一样,一边看一边做,做完之后可以查看正确答案。 2、开始分析需求 题目格式如下图 需求比较简单,…...
怎么降低美国服务器硬盘故障率?
要降低硬盘故障率,首先需要了解其产生的原因,常见的美国服务器硬盘故障原因包括温度过高、振动过大、电流不稳定、质量问题等。对于美国服务器而言,由于其运行环境可能存在差异,如温湿度变化大、电力供应不稳定等,这些…...

Java---后端事务管理
代码世界聚眸光,昼夜敲盘思绪长。 算法心间精构建,编程路上细思量。 屏前架构乾坤定,键上飞驰智慧扬。 默默耕耘成果现,创新科技铸辉煌。 目录 一,概念 二,Spring事务管理 三,rollbackFor事务回…...
Leetcode 3223. Minimum Length of String After Operations
Leetcode 3223. Minimum Length of String After Operations 1. 解题思路2. 代码实现 题目链接:3223. Minimum Length of String After Operations 1. 解题思路 这一题还是比较简单的,其实就是想明白对于任何一个字符,如果其个数在3个或以…...
oops使用笔记
oops-plugin-excel-to-json 使用 gitee上的文档图片不可见 参考 > https://forum.cocos.org/t/topic/156800 配置,打开“项目设置”,拖动到最下面,有一个"Excel to Json",前3项采用默认配置吧Excel, 默认的Excel目录是与assets平级的excel目…...
redistemplate介绍与演示
redistemplate是一个用于在Redis中存储和检索数据的模板库。它提供了一组简单易用的函数和接口,使开发者能够更方便地使用Redis进行数据操作。 使用redistemplate,你可以实现以下功能: 存储和检索数据:redistemplate提供了存储和…...
代谢组数据分析(十五):基于python语言构建PLS-DA算法构建分类模型
介绍 本教程描述了一个具有二元分类结果的研究的典型代谢组学数据分析工作流程。主要步骤包括: 从Excel表格导入代谢物和实验数据。基于汇总QC的数据清洗。利用主成分分析可视化来检查数据质量。两类单变量统计。使用偏最小二乘判别分析(PLS-DA)进行多变量分析,包括: 模型…...
任务3 git基础知识(主要是pr的笔记)
任务要求 https://github.com/InternLM/Tutorial/blob/camp3/docs/L0/Git/task.md 文档 https://github.com/InternLM/Tutorial/blob/camp3/docs/L0/Git/readme.md 任务 任务1:提交PR https://github.com/InternLM/Tutorial/pull/1242 任务2:实践…...

三相PWM整流器滞环电流控制仿真matlab simulink
1、内容简介 略 88-可以交流、咨询、答疑 2、内容说明 略 三相PWM整流器已广泛应用工业与电气控制领域电流控制技术决定着三相PWM整流器系统的控制性能。综合比 较了各种电流控制方法应用较多的滞环比较…...

AVL树超详解上
前言 学习过了二叉树以及二叉搜索树后(不了解二叉搜索树的朋友可以先看看这篇博客,二叉搜索树详解-CSDN博客),我们在一般情况下对于二叉搜索树的插入与查询时间复杂度都是O(lgN),是十分快的,但是在一些特殊…...

shell脚本--常见案例
1、自动备份文件或目录 2、批量重命名文件 3、查找并删除指定名称的文件: 4、批量删除文件 5、查找并替换文件内容 6、批量创建文件 7、创建文件夹并移动文件 8、在文件夹中查找文件...
【AI学习】三、AI算法中的向量
在人工智能(AI)算法中,向量(Vector)是一种将现实世界中的数据(如图像、文本、音频等)转化为计算机可处理的数值型特征表示的工具。它是连接人类认知(如语义、视觉特征)与…...

ElasticSearch搜索引擎之倒排索引及其底层算法
文章目录 一、搜索引擎1、什么是搜索引擎?2、搜索引擎的分类3、常用的搜索引擎4、搜索引擎的特点二、倒排索引1、简介2、为什么倒排索引不用B+树1.创建时间长,文件大。2.其次,树深,IO次数可怕。3.索引可能会失效。4.精准度差。三. 倒排索引四、算法1、Term Index的算法2、 …...
Matlab | matlab常用命令总结
常用命令 一、 基础操作与环境二、 矩阵与数组操作(核心)三、 绘图与可视化四、 编程与控制流五、 符号计算 (Symbolic Math Toolbox)六、 文件与数据 I/O七、 常用函数类别重要提示这是一份 MATLAB 常用命令和功能的总结,涵盖了基础操作、矩阵运算、绘图、编程和文件处理等…...
三体问题详解
从物理学角度,三体问题之所以不稳定,是因为三个天体在万有引力作用下相互作用,形成一个非线性耦合系统。我们可以从牛顿经典力学出发,列出具体的运动方程,并说明为何这个系统本质上是混沌的,无法得到一般解…...

ArcGIS Pro制作水平横向图例+多级标注
今天介绍下载ArcGIS Pro中如何设置水平横向图例。 之前我们介绍了ArcGIS的横向图例制作:ArcGIS横向、多列图例、顺序重排、符号居中、批量更改图例符号等等(ArcGIS出图图例8大技巧),那这次我们看看ArcGIS Pro如何更加快捷的操作。…...
Android第十三次面试总结(四大 组件基础)
Activity生命周期和四大启动模式详解 一、Activity 生命周期 Activity 的生命周期由一系列回调方法组成,用于管理其创建、可见性、焦点和销毁过程。以下是核心方法及其调用时机: onCreate() 调用时机:Activity 首次创建时调用。…...

CVE-2020-17519源码分析与漏洞复现(Flink 任意文件读取)
漏洞概览 漏洞名称:Apache Flink REST API 任意文件读取漏洞CVE编号:CVE-2020-17519CVSS评分:7.5影响版本:Apache Flink 1.11.0、1.11.1、1.11.2修复版本:≥ 1.11.3 或 ≥ 1.12.0漏洞类型:路径遍历&#x…...
比较数据迁移后MySQL数据库和OceanBase数据仓库中的表
设计一个MySQL数据库和OceanBase数据仓库的表数据比较的详细程序流程,两张表是相同的结构,都有整型主键id字段,需要每次从数据库分批取得2000条数据,用于比较,比较操作的同时可以再取2000条数据,等上一次比较完成之后,开始比较,直到比较完所有的数据。比较操作需要比较…...
Modbus RTU与Modbus TCP详解指南
目录 1. Modbus协议基础 1.1 什么是Modbus? 1.2 Modbus协议历史 1.3 Modbus协议族 1.4 Modbus通信模型 🎭 主从架构 🔄 请求响应模式 2. Modbus RTU详解 2.1 RTU是什么? 2.2 RTU物理层 🔌 连接方式 ⚡ 通信参数 2.3 RTU数据帧格式 📦 帧结构详解 🔍…...