当前位置: 首页 > news >正文

ES中的数据类型学习之Aggregate metric(聚合计算)

Aggregate metric field type | Elasticsearch Guide [7.17] | Elastic

对于object类型的字段来说,可以存子字段为 min/max/sum/value_count

PUT my-index
{"mappings": {"properties": {"my-agg-metric-field": { -- 字段名"type": "aggregate_metric_double", --字段类型"metrics": [ "min", "max", "sum", "value_count" ], --那些聚合操作"default_metric": "max"        -- 默认显示的聚合字段 用来query的}}}
}

Parameters for aggregate_metric_double fields 

metrics

(Required, array of strings) Array of metric sub-fields to store. Each value corresponds to a metric aggregation. Valid values are min, max, sum, and value_count. You must specify at least one value.

--只能是min/max/sum/value_count

default_metric

(Required, string) Default metric sub-field to use for queries, scripts, and aggregations that don’t use a sub-field. Must be a value from the metrics array.

-- 必须是metrics里的

time_series_metric

[preview] This functionality is in technical preview and may be changed or removed in a future release. Elastic will work to fix any issues, but features in technical preview are not subject to the support SLA of official GA features. (Optional, string)

For internal use by Elastic only.

--还没开放。

Uses

We designed aggregate_metric_double fields for use with the following aggregations:

  • A min aggregation returns the minimum value of all min sub-fields.
  • A max aggregation returns the maximum value of all max sub-fields.
  • A sum aggregation returns the sum of the values of all sum sub-fields.
  • A value_count aggregation returns the sum of the values of all value_count sub-fields.
  • A avg aggregation. There is no avg sub-field; the result of the avg aggregation is computed using the sum and value_count metrics. To run an avg aggregation, the field must contain both sum and value_count metric sub-field.

 -- 这里的sum和value_count都是 sum,但是value_count的用处是来计算avg

Running any other aggregation on an aggregate_metric_double field will fail with an "unsupported aggregation" error.

Finally, an aggregate_metric_double field supports the following queries for which it behaves as a double by delegating its behavior to its default_metric sub-field:

  • exists
  • range
  • term
  • terms

 -- 目前type=aggregate_metric_double 只持支持min/max/sum/value_count,其他类型会报错,目前也只支持下面4种查询

实战开始。

PUT stats-index
{
  "mappings": {
    "properties": {
      "agg_metric": {
        "type": "aggregate_metric_double",
        "metrics": [ "min", "max", "sum", "value_count" ],
        "default_metric": "max"
      }
    }
  }
}

PUT stats-index/_doc/1
{
  "agg_metric": {
    "min": -302.50,
    "max": 702.30,
    "sum": 200.0,
    "value_count": 25
  }
}

PUT stats-index/_doc/2
{
  "agg_metric": {
    "min": -93.00,
    "max": 1702.30,
    "sum": 300.00,
    "value_count": 25
  }
}

查询数据

POST stats-index/_search?size=0
{
  "aggs": {
    "metric_min": { "min": { "field": "agg_metric" } },
    "metric_max": { "max": { "field": "agg_metric" } },
    "metric_value_count": { "value_count": { "field": "agg_metric" } },
    "metric_sum": { "sum": { "field": "agg_metric" } },
    "metric_avg": { "avg": { "field": "agg_metric" } }
  }
}

-- 说下这个查询

-- size=0 意思是不看基础数据,只看聚合后的结果数据

-- aggs 是类似 term must 代表现在查的聚合数据

-- metric_min 代表聚合后的字段名,

--min 代表是哪个聚合方式min/max。。。

--"field": "agg_metric" 代表的是对哪个字段进行聚合可能有agg_metric1,agg_metric2

查询基础数据

GET stats-index/_search
{
  "query": {
    "term": {
      "agg_metric": {
        "value": 1702.30
      }
    }
  }
}

注意这里查询的是 max的值 也就是上文提到的default_metric

 

相关文章:

ES中的数据类型学习之Aggregate metric(聚合计算)

Aggregate metric field type | Elasticsearch Guide [7.17] | Elastic 对于object类型的字段来说,可以存子字段为 min/max/sum/value_count PUT my-index {"mappings": {"properties": {"my-agg-metric-field": { -- 字段名"ty…...

看准JS逆向案例:webpack逆向解析

🔍 逆向思路与步骤 抓包分析与参数定位 首先,我们通过抓包工具对看准网的请求进行分析。 发现请求中包含加密的参数b和kiv。 为了分析这些加密参数,我们需要进一步定位JS加密代码的位置。 扣取JS加密代码 定位到JS代码中的加密实现后&a…...

【C语言】 利用栈完成十进制转二进制(分文件编译,堆区申请空间malloc)

利用栈先进后出的特性,在函数内部,进行除二取余的操作,把每次的余数存入栈内,最后输出刚好就是逆序输出,为二进制数 学习过程中,对存储栈进行堆区的内存申请时候,并不是很熟练,一开始…...

如何解决ChromeDriver 126找不到chromedriver.exe问题

引言 在使用Selenium和ChromeDriver进行网页自动化时,ChromeDriver与Chrome浏览器版本不匹配的问题时有发生。最近,许多开发者在使用ChromeDriver 126时遇到了无法找到chromedriver.exe文件的错误。本文将介绍该问题的原因,并提供详细的解决…...

Anaconda下安装配置Jupyter

Anaconda下安装配置Jupyter 1、安装 conda activate my_env #激活虚拟环境 pip install jupyter #安装 jupyter notebook --generate-config #生成配置文件提示配置文件的位置: Writing default config to: /root/.jupyter/jupyter_notebook_config.py检查版本&am…...

蓝队黑名单IP解封提取脚本

应用场景:公司给蓝队人员一个解封IP列表,假如某个IP满足属于某某C段,则对该IP进行解封。该脚本则是进行批量筛选出符合条件的白名单IP 实操如下:公司给了一个已经封禁了的黑名单IP列表如下(black) 公司要求…...

共享充电桩语音ic方案,展现它的“说话”的能力

随着电动汽车的普及,充电设施的便捷性、智能化需求日益凸显,共享充电桩语音IC应运而生,成为连接人与机器、实现智能交互的桥梁。本文将为大家介绍共享充电桩语音ic的概述、应用词条以及优势,希望能够帮助您。 一、NV170D语音ic概述…...

ARM 单片机裸机任务调度框架

前言: 在没有使用操作系统的情况下,一个合理的裸机任务调度方式,可以更好的提供数据的处理,和用户体验,有多种任务调度的方式。 方案 1: 从上到下的任务调度方式,C语言程序的代码是在main函数…...

.Net 8 控制台程序部署(Linux篇)

在无流量Linux环境下部署.NET8开发的控制台程序 写在前面准备远程访问安装环境程序部署1.下载并导入2.解压并配置3.发布程序4.创建Systemd服务单元文件5.启用并启动服务 写在结尾 写在前面 好久没更新文章了,今天给大家带来的是在在无流量的Linux工控机上部署.Net8…...

LeetCode:x的平方根(C语言)

1、问题概述:给你一个非负整数 x,计算并返回 x 的 算术平方根 ,返回类型得是一个整数,小数舍弃 2、示例 示例 1: 输入:x 4 输出:2 示例 2: 输入:x 8 输出:…...

深入浅出WebRTC—DelayBasedBwe

WebRTC 中的带宽估计是其拥塞控制机制的核心组成部分,基于延迟的带宽估计是其中的一种策略,它主要基于延迟变化推断出可用的网络带宽。 1. 总体架构 1.1. 静态结构 1)DelayBasedBwe 受 GoogCcNetworkController 控制,接收其输入…...

JAVA开发工具IDEA如何连接操作数据库

一、下载驱动 下载地址:【免费】mysql-connector-j-8.2.0.jar资源-CSDN文库 二、导入驱动 鼠标右击下载到IDEA中的jar包,选择Add as Library选项 如图就导入成功 三、加载驱动 Class.forName("com.mysql.cj.jdbc.Driver"); 四、驱动管理…...

简化AI模型:PyTorch量化技术在边缘计算中的应用

引言 在资源受限的设备上部署深度学习模型时,模型量化技术可以显著提高模型的部署效率。通过将模型的权重和激活从32位浮点数转换为更低位数的值,量化可以减少模型的大小,加快推理速度,同时降低能耗。 模型量化概述 定义与优势…...

拥抱AI时代:解锁Prompt技术的无限潜力与深远影响

拥抱AI时代:解锁Prompt技术的无限潜力与深远影响 引言 在人工智能的浩瀚星空中,自然语言处理(NLP)无疑是最耀眼的星辰之一。随着技术的不断演进,NLP已经从最初的简单问答系统发展成为能够生成复杂文本、理解人类情感与…...

第123天:内网安全-域防火墙入站出站规则不出网隧道上线组策略对象同步

目录 案例一: 单机-防火墙-限制端口\协议出入站 案例二:不出网的解决思路 入站连接 隧道技术 案例三:域控-防火墙-组策略对象同步 案例四:域控-防火墙-组策略不出网上线 msf cs 案例一: 单机-防火墙-限制端口\…...

博客建站4 - ssh远程连接服务器

1. 什么是SSH?2. 下载shh客户端3. 配置ssh密钥4. 连接服务器5. 常见问题 5.1. IT IS POSSIBLE THAT SOMEONE IS DOING SOMETHING NASTY! 1. 什么是SSH? SSH(Secure Shell)是一种加密的网络协议,用于在不安全的网络中安全地远程登录到其他…...

MySQL--索引(3)

1.索引创建注意点 选择合适的字段 1.不为 NULL 的字段 索引字段的数据应该尽量不为 NULL,因为对于数据为 NULL 的字段,数据库较难优化。如果字段频繁被查询,但又避免不了为 NULL,建议使用 0,1,true,false 这样语义较为清晰的短值或…...

sql_exporter通过sql收集业务数据并通过prometheus+grafana展示

下载并解压安装sql_exporter wget https://github.com/free/sql_exporter/releases/download/0.5/sql_exporter-0.5.linux-amd64.tar.gz #解压 tar xvf sql_exporter-0.5.linux-amd64.tar.gz -C /usr/local/修改主配置文件 cd /usr/local/ mv sql_exporter-0.5.linux-amd64 s…...

pytorch 笔记:torch.optim.Adam

torch.optim.Adam 是一个实现 Adam 优化算法的类。Adam 是一个常用的梯度下降优化方法,特别适合处理大规模数据集和参数的深度学习模型 torch.optim.Adam(params, lr0.001, betas(0.9, 0.999), eps1e-08, weight_decay0, amsgradFalse, *, foreachNone, maximizeFa…...

开源AI智能名片小程序:深度剖析体验优化策略,激活小程序生命力的运营之道

摘要:在移动互联网的浪潮中,微信小程序凭借其无需下载、即用即走的特性,迅速成为企业连接用户、拓展市场的重要桥梁。开源AI智能名片小程序,作为这一领域的创新尝试,旨在通过融合人工智能技术与传统商务名片的概念&…...

利用ngx_stream_return_module构建简易 TCP/UDP 响应网关

一、模块概述 ngx_stream_return_module 提供了一个极简的指令&#xff1a; return <value>;在收到客户端连接后&#xff0c;立即将 <value> 写回并关闭连接。<value> 支持内嵌文本和内置变量&#xff08;如 $time_iso8601、$remote_addr 等&#xff09;&a…...

Admin.Net中的消息通信SignalR解释

定义集线器接口 IOnlineUserHub public interface IOnlineUserHub {/// 在线用户列表Task OnlineUserList(OnlineUserList context);/// 强制下线Task ForceOffline(object context);/// 发布站内消息Task PublicNotice(SysNotice context);/// 接收消息Task ReceiveMessage(…...

Qwen3-Embedding-0.6B深度解析:多语言语义检索的轻量级利器

第一章 引言&#xff1a;语义表示的新时代挑战与Qwen3的破局之路 1.1 文本嵌入的核心价值与技术演进 在人工智能领域&#xff0c;文本嵌入技术如同连接自然语言与机器理解的“神经突触”——它将人类语言转化为计算机可计算的语义向量&#xff0c;支撑着搜索引擎、推荐系统、…...

Cloudflare 从 Nginx 到 Pingora:性能、效率与安全的全面升级

在互联网的快速发展中&#xff0c;高性能、高效率和高安全性的网络服务成为了各大互联网基础设施提供商的核心追求。Cloudflare 作为全球领先的互联网安全和基础设施公司&#xff0c;近期做出了一个重大技术决策&#xff1a;弃用长期使用的 Nginx&#xff0c;转而采用其内部开发…...

【Oracle】分区表

个人主页&#xff1a;Guiat 归属专栏&#xff1a;Oracle 文章目录 1. 分区表基础概述1.1 分区表的概念与优势1.2 分区类型概览1.3 分区表的工作原理 2. 范围分区 (RANGE Partitioning)2.1 基础范围分区2.1.1 按日期范围分区2.1.2 按数值范围分区 2.2 间隔分区 (INTERVAL Partit…...

scikit-learn机器学习

# 同时添加如下代码, 这样每次环境(kernel)启动的时候只要运行下方代码即可: # Also add the following code, # so that every time the environment (kernel) starts, # just run the following code: import sys sys.path.append(/home/aistudio/external-libraries)机…...

【Elasticsearch】Elasticsearch 在大数据生态圈的地位 实践经验

Elasticsearch 在大数据生态圈的地位 & 实践经验 1.Elasticsearch 的优势1.1 Elasticsearch 解决的核心问题1.1.1 传统方案的短板1.1.2 Elasticsearch 的解决方案 1.2 与大数据组件的对比优势1.3 关键优势技术支撑1.4 Elasticsearch 的竞品1.4.1 全文搜索领域1.4.2 日志分析…...

学习一下用鸿蒙​​DevEco Studio HarmonyOS5实现百度地图

在鸿蒙&#xff08;HarmonyOS5&#xff09;中集成百度地图&#xff0c;可以通过以下步骤和技术方案实现。结合鸿蒙的分布式能力和百度地图的API&#xff0c;可以构建跨设备的定位、导航和地图展示功能。 ​​1. 鸿蒙环境准备​​ ​​开发工具​​&#xff1a;下载安装 ​​De…...

渗透实战PortSwigger靶场:lab13存储型DOM XSS详解

进来是需要留言的&#xff0c;先用做简单的 html 标签测试 发现面的</h1>不见了 数据包中找到了一个loadCommentsWithVulnerableEscapeHtml.js 他是把用户输入的<>进行 html 编码&#xff0c;输入的<>当成字符串处理回显到页面中&#xff0c;看来只是把用户输…...

LangChain 中的文档加载器(Loader)与文本切分器(Splitter)详解《二》

&#x1f9e0; LangChain 中 TextSplitter 的使用详解&#xff1a;从基础到进阶&#xff08;附代码&#xff09; 一、前言 在处理大规模文本数据时&#xff0c;特别是在构建知识库或进行大模型训练与推理时&#xff0c;文本切分&#xff08;Text Splitting&#xff09; 是一个…...