Python实现招聘数据采集 ,并做可视化分析
转眼秋招快到了, 今天来学习一下如何用Python采集全网招聘数据,并进行可视化分析,为就业准备~
话不多说开始造
源码和详细的视频讲解我都打包好了,文末名片自取
准备工作
首先你需要准备这些
环境
Python 3.10
Pycharm
模块
DrissionPage -> pip install DrissionPage
csv
新建一个临时 py 文件,并输入以下代码,填入您电脑里的 Chrome 浏览器可执行文件路径,然后运行。
from DrissionPage import ChromiumOptionspath = r'D:\Chrome\Chrome.exe' # 请改为你电脑内Chrome可执行文件路径
ChromiumOptions().set_browser_path(path).save()
爬虫实现的基本流程
一、数据来源分析
1.明确需求
明确采集的网站以及数据内容
- 网址: https://****/web/geek/job?query=python&city=100010000
- 数据: 职位信息
2.抓包分析
通过浏览器开发者工具分析对应的数据位置
- 打开开发者工具
- F12 / 右键点击检查选择 network (网络)
- 刷新网页
- 通过关键字搜索找到对应的数据位置
- 关键字: 需要什么数据就搜什么数据
数据包地址:
https://***/wapi/zpgeek/search/joblist.json?scene=1&query=pyth
on&city=100010000&experience=&payType=&partTime=°ree=&industry=&scale=&stage=&p
osition=&jobType=&salary=&multiBusinessDistrict=&multiSubway=&page=1&pageSize=30
二、代码实现步骤
requests基本实现步骤基本步骤分为四步:
1.发送请求: 模拟浏览器对于url地址发送请求
2.获取数据: 获取服务器返回响应数据
3.解析数据: 提取我们需要的数据内容
4.保存数据: 提取的数据保存表格/文本/数据库/json文件中
为什么不选择使用requests去请求获取数据呢?
某些网站数据内容(请求), 存在加密内容->需要JS逆向
比如: 今晚案例boss -> cookie 中 zp_stoken 时效性
drissionpage 自动化模块
模拟人的行为操作浏览器
- 点击 输入 拖拽 获取数据
1.可以直接通过元素面板, 进行元素定位获取相关数据内容
2.可以直接监听数据, 获取响应数据
监听数据->在执行动作之前
注意细节:
a.需要配置浏览器可执行文件路径
b.通过抓包分析找到的数据包链接地址进行的监听, 并且监听数据->在执行动作之前
3.解析数据: 提取我们需要的数据内容
4.保存数据: 提取的数据保存表格/文本/数据库/json文件中
点击下一页按钮:
1.定位按钮元素
2.进行相关操作
dp.ele(‘css:.ui-icon-arrow-right’).click()
-dp.ele() 通过元素定位
-css:.ui-icon-arrow-right 使用css语法查找元素
-click() 点击操作
数据可视化
简单使用可视化
# 导入数据处理模块
import pandas as pd
# 导入配置项
from pyecharts import options as opts
# 导入图形
from pyecharts.charts import Pie, Bar, Line
# 导入数据(随机生成数据)
from pyecharts.faker import Faker# 读取csv文件
df = pd.read_csv('data.csv')
# print(df.head())
# 获取x轴数据内容
x_city = df['城市'].value_counts().index.to_list()
# 获取y轴数据内容
y_city = df['城市'].value_counts().to_list()c = (Pie().add("",[list(z)for z in zip(x_city, # x轴数据y_city, # y轴数据)],center=["40%", "50%"],).set_global_opts(# 设置可视化标题title_opts=opts.TitleOpts(title="Python招聘城市分布情况"),legend_opts=opts.LegendOpts(type_="scroll", pos_left="80%", orient="vertical"),).set_series_opts(label_opts=opts.LabelOpts(formatter="{b}: {c}"))# 导出可视化效果: 保存html文件.render("pie_Python招聘城市分布情况.html")
)
# 获取x轴数据内容
x_edu = df['学历'].value_counts().index.to_list()
# 获取y轴数据内容
y_edu = df['学历'].value_counts().to_list()
c_bar = (Bar().add_xaxis(x_edu).add_yaxis("学历", y_edu, stack="stack1").set_series_opts(label_opts=opts.LabelOpts(is_show=False)).set_global_opts(title_opts=opts.TitleOpts(title="Bar-Python招聘学历要求分布情况")).render("bar_Python招聘学历要求分布情况.html")
)# 获取x轴数据内容
x_exp = df['经验'].value_counts().index.to_list()
# 获取y轴数据内容
y_exp = df['经验'].value_counts().to_list()
c_Line = (Line().add_xaxis(x_exp).add_yaxis("经验", y_exp, is_connect_nones=True).set_global_opts(title_opts=opts.TitleOpts(title="Line-Python招聘经验要求分布")).render("line_Python招聘经验要求分布.html")
)
效果展示
相关文章:

Python实现招聘数据采集 ,并做可视化分析
转眼秋招快到了, 今天来学习一下如何用Python采集全网招聘数据,并进行可视化分析,为就业准备~ 话不多说开始造 源码和详细的视频讲解我都打包好了,文末名片自取 准备工作 首先你需要准备这些 环境 Python 3.10 Pycharm 模块…...

ES中的数据类型学习之Aggregate metric(聚合计算)
Aggregate metric field type | Elasticsearch Guide [7.17] | Elastic 对于object类型的字段来说,可以存子字段为 min/max/sum/value_count PUT my-index {"mappings": {"properties": {"my-agg-metric-field": { -- 字段名"ty…...

看准JS逆向案例:webpack逆向解析
🔍 逆向思路与步骤 抓包分析与参数定位 首先,我们通过抓包工具对看准网的请求进行分析。 发现请求中包含加密的参数b和kiv。 为了分析这些加密参数,我们需要进一步定位JS加密代码的位置。 扣取JS加密代码 定位到JS代码中的加密实现后&a…...

【C语言】 利用栈完成十进制转二进制(分文件编译,堆区申请空间malloc)
利用栈先进后出的特性,在函数内部,进行除二取余的操作,把每次的余数存入栈内,最后输出刚好就是逆序输出,为二进制数 学习过程中,对存储栈进行堆区的内存申请时候,并不是很熟练,一开始…...

如何解决ChromeDriver 126找不到chromedriver.exe问题
引言 在使用Selenium和ChromeDriver进行网页自动化时,ChromeDriver与Chrome浏览器版本不匹配的问题时有发生。最近,许多开发者在使用ChromeDriver 126时遇到了无法找到chromedriver.exe文件的错误。本文将介绍该问题的原因,并提供详细的解决…...

Anaconda下安装配置Jupyter
Anaconda下安装配置Jupyter 1、安装 conda activate my_env #激活虚拟环境 pip install jupyter #安装 jupyter notebook --generate-config #生成配置文件提示配置文件的位置: Writing default config to: /root/.jupyter/jupyter_notebook_config.py检查版本&am…...

蓝队黑名单IP解封提取脚本
应用场景:公司给蓝队人员一个解封IP列表,假如某个IP满足属于某某C段,则对该IP进行解封。该脚本则是进行批量筛选出符合条件的白名单IP 实操如下:公司给了一个已经封禁了的黑名单IP列表如下(black) 公司要求…...

共享充电桩语音ic方案,展现它的“说话”的能力
随着电动汽车的普及,充电设施的便捷性、智能化需求日益凸显,共享充电桩语音IC应运而生,成为连接人与机器、实现智能交互的桥梁。本文将为大家介绍共享充电桩语音ic的概述、应用词条以及优势,希望能够帮助您。 一、NV170D语音ic概述…...

ARM 单片机裸机任务调度框架
前言: 在没有使用操作系统的情况下,一个合理的裸机任务调度方式,可以更好的提供数据的处理,和用户体验,有多种任务调度的方式。 方案 1: 从上到下的任务调度方式,C语言程序的代码是在main函数…...
.Net 8 控制台程序部署(Linux篇)
在无流量Linux环境下部署.NET8开发的控制台程序 写在前面准备远程访问安装环境程序部署1.下载并导入2.解压并配置3.发布程序4.创建Systemd服务单元文件5.启用并启动服务 写在结尾 写在前面 好久没更新文章了,今天给大家带来的是在在无流量的Linux工控机上部署.Net8…...
LeetCode:x的平方根(C语言)
1、问题概述:给你一个非负整数 x,计算并返回 x 的 算术平方根 ,返回类型得是一个整数,小数舍弃 2、示例 示例 1: 输入:x 4 输出:2 示例 2: 输入:x 8 输出:…...

深入浅出WebRTC—DelayBasedBwe
WebRTC 中的带宽估计是其拥塞控制机制的核心组成部分,基于延迟的带宽估计是其中的一种策略,它主要基于延迟变化推断出可用的网络带宽。 1. 总体架构 1.1. 静态结构 1)DelayBasedBwe 受 GoogCcNetworkController 控制,接收其输入…...

JAVA开发工具IDEA如何连接操作数据库
一、下载驱动 下载地址:【免费】mysql-connector-j-8.2.0.jar资源-CSDN文库 二、导入驱动 鼠标右击下载到IDEA中的jar包,选择Add as Library选项 如图就导入成功 三、加载驱动 Class.forName("com.mysql.cj.jdbc.Driver"); 四、驱动管理…...
简化AI模型:PyTorch量化技术在边缘计算中的应用
引言 在资源受限的设备上部署深度学习模型时,模型量化技术可以显著提高模型的部署效率。通过将模型的权重和激活从32位浮点数转换为更低位数的值,量化可以减少模型的大小,加快推理速度,同时降低能耗。 模型量化概述 定义与优势…...

拥抱AI时代:解锁Prompt技术的无限潜力与深远影响
拥抱AI时代:解锁Prompt技术的无限潜力与深远影响 引言 在人工智能的浩瀚星空中,自然语言处理(NLP)无疑是最耀眼的星辰之一。随着技术的不断演进,NLP已经从最初的简单问答系统发展成为能够生成复杂文本、理解人类情感与…...

第123天:内网安全-域防火墙入站出站规则不出网隧道上线组策略对象同步
目录 案例一: 单机-防火墙-限制端口\协议出入站 案例二:不出网的解决思路 入站连接 隧道技术 案例三:域控-防火墙-组策略对象同步 案例四:域控-防火墙-组策略不出网上线 msf cs 案例一: 单机-防火墙-限制端口\…...

博客建站4 - ssh远程连接服务器
1. 什么是SSH?2. 下载shh客户端3. 配置ssh密钥4. 连接服务器5. 常见问题 5.1. IT IS POSSIBLE THAT SOMEONE IS DOING SOMETHING NASTY! 1. 什么是SSH? SSH(Secure Shell)是一种加密的网络协议,用于在不安全的网络中安全地远程登录到其他…...
MySQL--索引(3)
1.索引创建注意点 选择合适的字段 1.不为 NULL 的字段 索引字段的数据应该尽量不为 NULL,因为对于数据为 NULL 的字段,数据库较难优化。如果字段频繁被查询,但又避免不了为 NULL,建议使用 0,1,true,false 这样语义较为清晰的短值或…...

sql_exporter通过sql收集业务数据并通过prometheus+grafana展示
下载并解压安装sql_exporter wget https://github.com/free/sql_exporter/releases/download/0.5/sql_exporter-0.5.linux-amd64.tar.gz #解压 tar xvf sql_exporter-0.5.linux-amd64.tar.gz -C /usr/local/修改主配置文件 cd /usr/local/ mv sql_exporter-0.5.linux-amd64 s…...

pytorch 笔记:torch.optim.Adam
torch.optim.Adam 是一个实现 Adam 优化算法的类。Adam 是一个常用的梯度下降优化方法,特别适合处理大规模数据集和参数的深度学习模型 torch.optim.Adam(params, lr0.001, betas(0.9, 0.999), eps1e-08, weight_decay0, amsgradFalse, *, foreachNone, maximizeFa…...
Python爬虫实战:研究MechanicalSoup库相关技术
一、MechanicalSoup 库概述 1.1 库简介 MechanicalSoup 是一个 Python 库,专为自动化交互网站而设计。它结合了 requests 的 HTTP 请求能力和 BeautifulSoup 的 HTML 解析能力,提供了直观的 API,让我们可以像人类用户一样浏览网页、填写表单和提交请求。 1.2 主要功能特点…...

(LeetCode 每日一题) 3442. 奇偶频次间的最大差值 I (哈希、字符串)
题目:3442. 奇偶频次间的最大差值 I 思路 :哈希,时间复杂度0(n)。 用哈希表来记录每个字符串中字符的分布情况,哈希表这里用数组即可实现。 C版本: class Solution { public:int maxDifference(string s) {int a[26]…...
【网络】每天掌握一个Linux命令 - iftop
在Linux系统中,iftop是网络管理的得力助手,能实时监控网络流量、连接情况等,帮助排查网络异常。接下来从多方面详细介绍它。 目录 【网络】每天掌握一个Linux命令 - iftop工具概述安装方式核心功能基础用法进阶操作实战案例面试题场景生产场景…...

Module Federation 和 Native Federation 的比较
前言 Module Federation 是 Webpack 5 引入的微前端架构方案,允许不同独立构建的应用在运行时动态共享模块。 Native Federation 是 Angular 官方基于 Module Federation 理念实现的专为 Angular 优化的微前端方案。 概念解析 Module Federation (模块联邦) Modul…...
【碎碎念】宝可梦 Mesh GO : 基于MESH网络的口袋妖怪 宝可梦GO游戏自组网系统
目录 游戏说明《宝可梦 Mesh GO》 —— 局域宝可梦探索Pokmon GO 类游戏核心理念应用场景Mesh 特性 宝可梦玩法融合设计游戏构想要素1. 地图探索(基于物理空间 广播范围)2. 野生宝可梦生成与广播3. 对战系统4. 道具与通信5. 延伸玩法 安全性设计 技术选…...

AI书签管理工具开发全记录(十九):嵌入资源处理
1.前言 📝 在上一篇文章中,我们完成了书签的导入导出功能。本篇文章我们研究如何处理嵌入资源,方便后续将资源打包到一个可执行文件中。 2.embed介绍 🎯 Go 1.16 引入了革命性的 embed 包,彻底改变了静态资源管理的…...

GC1808高性能24位立体声音频ADC芯片解析
1. 芯片概述 GC1808是一款24位立体声音频模数转换器(ADC),支持8kHz~96kHz采样率,集成Δ-Σ调制器、数字抗混叠滤波器和高通滤波器,适用于高保真音频采集场景。 2. 核心特性 高精度:24位分辨率,…...
代理篇12|深入理解 Vite中的Proxy接口代理配置
在前端开发中,常常会遇到 跨域请求接口 的情况。为了解决这个问题,Vite 和 Webpack 都提供了 proxy 代理功能,用于将本地开发请求转发到后端服务器。 什么是代理(proxy)? 代理是在开发过程中,前端项目通过开发服务器,将指定的请求“转发”到真实的后端服务器,从而绕…...
服务器--宝塔命令
一、宝塔面板安装命令 ⚠️ 必须使用 root 用户 或 sudo 权限执行! sudo su - 1. CentOS 系统: yum install -y wget && wget -O install.sh http://download.bt.cn/install/install_6.0.sh && sh install.sh2. Ubuntu / Debian 系统…...

JVM 内存结构 详解
内存结构 运行时数据区: Java虚拟机在运行Java程序过程中管理的内存区域。 程序计数器: 线程私有,程序控制流的指示器,分支、循环、跳转、异常处理、线程恢复等基础功能都依赖这个计数器完成。 每个线程都有一个程序计数…...