当前位置: 首页 > news >正文

深入探索 SQL 中的 LIKE 右模糊匹配(LIKE RIGHT)与左模糊匹配(LIKE LEFT)

引言

在数据库操作中,LIKE 子句是执行模糊搜索的强大工具,用于匹配列中的数据与指定的模式。本文将详细介绍 LIKE 子句中的两种常用模式:右模糊匹配(LIKE RIGHT)和左模糊匹配(LIKE LEFT),并通过实际的例子说明如何在 SQL 查询中有效使用这些技巧。

什么是 LIKE 子句?

在 SQL 中,LIKE 子句用于在 WHERE 条件中搜索列中的数据,这些数据符合一定的模式。它常常与 %(表示任意字符序列)和 _(表示单一字符)通配符一起使用。

LIKE RIGHT 和 LIKE LEFT
  1. LIKE RIGHT(右模糊匹配)

    • 这种模式通常用来匹配以特定字符串开始的记录。其核心是在模式的右侧(末尾)使用 % 通配符。
    • 示例语法:LIKE 'apple%' 表示匹配以 “apple” 开始的任何字符串,如 “apple”, “applesauce”, “apple pie”。
  2. LIKE LEFT(左模糊匹配)

    • 左模糊匹配用来查找以特定字符串结束的记录。这种情况下,% 通配符放在模式的左侧(开始)。
    • 示例语法:LIKE '%apple' 表示匹配以 “apple” 结束的任何字符串,如 “pineapple”, “green apple”, “apple”.
使用示例

让我们通过一些具体的示例来更好地理解这两种匹配模式的使用:

  1. 查询以特定前缀开始的公司名称

    SELECT * FROM companies WHERE name LIKE 'Tech%';
    

    这条查询将返回所有以 “Tech” 开始的公司名称,如 “TechCrunch”, “Technology Solutions”, “Techmark”.

  2. 查找特定后缀的电子邮件地址

    SELECT * FROM users WHERE email LIKE '%@gmail.com';
    

    这将返回所有以 “@gmail.com” 结尾的电子邮件地址。

实战案例

假设我们在一个物流系统中管理着包含门号信息的数据库,格式可能包括 “Gate-123”, “Exit-456”, “Entry-789” 等。我们需要找出所有以 “Gate-” 开始的记录,并且也要找出所有以 “-789” 结尾的记录。

  • 查询以 “Gate-” 开始的门号

    SELECT * FROM gates WHERE gate_no LIKE 'Gate-%';
    

    这将列出所有 “Gate-” 开头的记录。

  • 查询以 “-789” 结尾的门号

    SELECT * FROM gates WHERE gate_no LIKE '%-789';
    

    这将找到所有以 “-789” 结尾的门号。

结论

理解并正确使用 LIKE RIGHTLIKE LEFT 可以显著提高数据库查询的灵活性和效率。无论是进行数据分析还是日常的数据维护,熟悉这些模式匹配技术都是非常有用的。通过上述示例和解释,希望你能更好地掌握如何在实际应用中使用这些强大的 SQL 技巧。

相关文章:

深入探索 SQL 中的 LIKE 右模糊匹配(LIKE RIGHT)与左模糊匹配(LIKE LEFT)

引言 在数据库操作中,LIKE 子句是执行模糊搜索的强大工具,用于匹配列中的数据与指定的模式。本文将详细介绍 LIKE 子句中的两种常用模式:右模糊匹配(LIKE RIGHT)和左模糊匹配(LIKE LEFT)&#…...

mybatis 多数据源 TDataSource required a single bean, but 2 were found

情况说明: 项目中本来就有一个数据源了,运行的好好的后来又合并了另一个项目,另一个项目也配置了数据源。 于是出现了如下错误: mybatis 多数据源 TDataSource required a single bean, but 2 were found 解决方法&#xff1a…...

Dubbo SPI 之路由器

1. 背景介绍 Dubbo 是一个高性能的 Java RPC 框架,由阿里巴巴开源并广泛应用于分布式系统中。在 Dubbo 的架构中,SPI(Service Provider Interface)是一个关键组件,允许在运行时动态加载不同的服务实现。SPI 机制提供了…...

Python深度学习环境配置(Pytorch、CUDA、cuDNN),包括Anaconda搭配Pycharm的环境搭建以及基础使用教程(保姆级教程,适合小白、深度学习零基础入门)

全流程导览 一、前言二、基本介绍2.1全过程软件基本介绍2.1.1 Pytorch2.1.2 Anaconda2.1.3 Pycharm2.1.4 显卡GPU及其相关概念2.1.5 CUDA和cuDNN 2.2 各部分相互间的联系和安装逻辑关系 三、Anaconda安装3.1安装Anaconda3.2配置环境变量3.3检验是否安装成功 四、Pycharm安装五、…...

月影护眼大路灯怎么样?书客|月影|霍尼韦尔超硬核实力性能测评pk!

月影护眼大路灯怎么样?选到专业优质的护眼大路灯是真的可以使我们在用眼时减少疲劳感,达到护眼效果,但如果不慎买到劣质的护眼灯产品,不仅达不到健康的环境光,还越用越觉得眼睛疲劳感加重,在水深的护眼灯市…...

邮件安全篇:邮件传输加密(SSL/TLS or STATRTTLS)

1. 前言 使用过邮件客户端的同学一定见过下面这张图。这是客户端账号配置界面,里面有SSL、STARTTLS选项。刚接触邮件客户端的同学肯定会有这些疑问:什么是SSL?什么是STARTTLS?两者有什么区别?具体该如何选择呢&#x…...

【系统架构设计 每日一问】三 Redis支持事务么,Redis的事务如何保证

实际上,关于Redis事务的说法“Redis 的事务只能保证隔离性和一致性(I 和 C),无法保证原子性和持久性(A 和 D)”并不完全准确。下面我将分别解释Redis事务的四个特性:原子性(Atomicit…...

【中项】系统集成项目管理工程师-第4章 信息系统架构-4.3应用架构

前言:系统集成项目管理工程师专业,现分享一些教材知识点。觉得文章还不错的喜欢点赞收藏的同时帮忙点点关注。 软考同样是国家人社部和工信部组织的国家级考试,全称为“全国计算机与软件专业技术资格(水平)考试”&…...

DasViewer打开Revit输出的fbx格式的模型,为啥一团黑?

答:这个应该是没有读取到贴图文件。贴图文件和obj文件需要在同级目录下面。 DasViewer是由大势智慧自主研发的免费的实景三维模型浏览器,采用多细节层次模型逐步自适应加载技术,让用户在极低的电脑配置下,也能流畅的加载较大规模实景三维模型,提供方便快捷的数据浏览操作。 免…...

【05】LLaMA-Factory微调大模型——初尝微调模型

上文【04】LLaMA-Factory微调大模型——数据准备介绍了如何准备指令监督微调数据,为后续的微调模型提供高质量、格式规范的数据支撑。本文将正式进入模型微调阶段,构建法律垂直应用大模型。 一、硬件依赖 LLaMA-Factory框架对硬件和软件的依赖可见以下…...

Training for Stable Diffusion

1.Training for Stable Diffusion 笔记来源: 1.Denoising Diffusion Probabilistic Models 2.最大似然估计(Maximum likelihood estimation) 3.Understanding Maximum Likelihood Estimation 4.How to Solve ‘CUDA out of memory’ in PyTorch 5.pytorch-stable-d…...

初学51单片机之指针基础与串口通信应用

开始之前推荐一个电路学习软件,这个软件笔者也刚接触。名字是Circuit有在线版本和不在线版本,这是笔者在B站看视频翻到的。 Paul Falstadhttps://www.falstad.com/这是地址。 离线版本在网站内点这个进去 根据你的系统下载你需要的版本红线的是windows…...

【启明智显分享】甲醛检测仪HMI方案:ESP32-S3方案4.3寸触摸串口屏,RS485、WIFI/蓝牙可选

今年,“串串房”一词频繁引发广大网友关注。“串串房”,也被称为“陷阱房”“贩子房”——炒房客以低价收购旧房子或者毛坯房,用极度节省成本的方式对房子进行装修,之后作为精修房高价租售,因甲醛等有害物质含量极高&a…...

Linux 驱动学习笔记

1、驱动程序分为几类? • 内核驱动程序(Kernel Drivers):这些是运行在操作系统内核空间的驱动程序,用于直接访问和控制硬件设备。它们提供了与硬件交互的底层功能,如处理中断、访问寄存器、数据传输等。 •…...

ip地址设置了重启又改变了怎么回事

在数字世界的浩瀚星海中,IP地址就如同每个设备的“身份证”,确保它们在网络中准确无误地定位与通信。然而,当我们精心为设备配置好IP地址后,却时常遭遇一个令人费解的现象:一旦设备重启,原本设定的IP地址竟…...

layui table 浮动操作内容收缩,展开

layui table 隐藏浮动操作内容 fixed: right, style:, title: 操作,align:left, minWidth: 450, toolbar:#id分析: 浮动一块新增一个class layui-table-fixed-r 可以隐藏整块内容进行,新增一个按钮点击时间,然后进行收缩和展开 $(‘.layui-…...

Ubuntu24.04 NFS 服务配置

1、NFS 介绍 NFS 是 Network FileSystem 的缩写,顾名思义就是网络文件存储系统,它允许网络中的计算机之间通过 TCP/IP 网络共享资源。通过 NFS,我们本地 NFS 的客户端应用可以透明地读写位于服务端 NFS 服务器上的文件,就像访问本…...

vue3使用html2canvas

安装 yarn add html2canvas 代码 <template><div class"container" ref"container"><div class"left"><img :src"logo" alt"" class"logo"><h2>Contractors pass/承包商通行证&l…...

OpenCV分水岭算法watershed函数的使用

操作系统&#xff1a;ubuntu22.04 OpenCV版本&#xff1a;OpenCV4.9 IDE:Visual Studio Code 编程语言&#xff1a;C11 描述 我们将学会使用基于标记的分水岭算法来进行图像分割。我们将看到&#xff1a;watershed()函数的用法。 任何灰度图像都可以被视为一个地形表…...

laravel为Model设置全局作用域

如果一个项目中存在这么一个sql条件在任何情况下或大多数情况都会被使用&#xff0c;同时很容易被开发者遗忘&#xff0c;那么就非常适用于今天要提到的这个功能&#xff0c;Eloquent\Model的全局作用域。 首先看一个示例&#xff0c;有个数据表&#xff0c;结构如下&#xff1…...

iPhone密码忘记了办?iPhoneUnlocker,iPhone解锁工具Aiseesoft iPhone Unlocker 高级注册版​分享

平时用 iPhone 的时候&#xff0c;难免会碰到解锁的麻烦事。比如密码忘了、人脸识别 / 指纹识别突然不灵&#xff0c;或者买了二手 iPhone 却被原来的 iCloud 账号锁住&#xff0c;这时候就需要靠谱的解锁工具来帮忙了。Aiseesoft iPhone Unlocker 就是专门解决这些问题的软件&…...

Golang dig框架与GraphQL的完美结合

将 Go 的 Dig 依赖注入框架与 GraphQL 结合使用&#xff0c;可以显著提升应用程序的可维护性、可测试性以及灵活性。 Dig 是一个强大的依赖注入容器&#xff0c;能够帮助开发者更好地管理复杂的依赖关系&#xff0c;而 GraphQL 则是一种用于 API 的查询语言&#xff0c;能够提…...

linux 错误码总结

1,错误码的概念与作用 在Linux系统中,错误码是系统调用或库函数在执行失败时返回的特定数值,用于指示具体的错误类型。这些错误码通过全局变量errno来存储和传递,errno由操作系统维护,保存最近一次发生的错误信息。值得注意的是,errno的值在每次系统调用或函数调用失败时…...

【论文笔记】若干矿井粉尘检测算法概述

总的来说&#xff0c;传统机器学习、传统机器学习与深度学习的结合、LSTM等算法所需要的数据集来源于矿井传感器测量的粉尘浓度&#xff0c;通过建立回归模型来预测未来矿井的粉尘浓度。传统机器学习算法性能易受数据中极端值的影响。YOLO等计算机视觉算法所需要的数据集来源于…...

今日科技热点速览

&#x1f525; 今日科技热点速览 &#x1f3ae; 任天堂Switch 2 正式发售 任天堂新一代游戏主机 Switch 2 今日正式上线发售&#xff0c;主打更强图形性能与沉浸式体验&#xff0c;支持多模态交互&#xff0c;受到全球玩家热捧 。 &#x1f916; 人工智能持续突破 DeepSeek-R1&…...

数据库分批入库

今天在工作中&#xff0c;遇到一个问题&#xff0c;就是分批查询的时候&#xff0c;由于批次过大导致出现了一些问题&#xff0c;一下是问题描述和解决方案&#xff1a; 示例&#xff1a; // 假设已有数据列表 dataList 和 PreparedStatement pstmt int batchSize 1000; // …...

OpenPrompt 和直接对提示词的嵌入向量进行训练有什么区别

OpenPrompt 和直接对提示词的嵌入向量进行训练有什么区别 直接训练提示词嵌入向量的核心区别 您提到的代码: prompt_embedding = initial_embedding.clone().requires_grad_(True) optimizer = torch.optim.Adam([prompt_embedding...

Spring是如何解决Bean的循环依赖:三级缓存机制

1、什么是 Bean 的循环依赖 在 Spring框架中,Bean 的循环依赖是指多个 Bean 之间‌互相持有对方引用‌,形成闭环依赖关系的现象。 多个 Bean 的依赖关系构成环形链路,例如: 双向依赖:Bean A 依赖 Bean B,同时 Bean B 也依赖 Bean A(A↔B)。链条循环: Bean A → Bean…...

JVM虚拟机:内存结构、垃圾回收、性能优化

1、JVM虚拟机的简介 Java 虚拟机(Java Virtual Machine 简称:JVM)是运行所有 Java 程序的抽象计算机,是 Java 语言的运行环境,实现了 Java 程序的跨平台特性。JVM 屏蔽了与具体操作系统平台相关的信息,使得 Java 程序只需生成在 JVM 上运行的目标代码(字节码),就可以…...

使用Spring AI和MCP协议构建图片搜索服务

目录 使用Spring AI和MCP协议构建图片搜索服务 引言 技术栈概览 项目架构设计 架构图 服务端开发 1. 创建Spring Boot项目 2. 实现图片搜索工具 3. 配置传输模式 Stdio模式&#xff08;本地调用&#xff09; SSE模式&#xff08;远程调用&#xff09; 4. 注册工具提…...