OpenAI从GPT-4V到GPT-4O,再到GPT-4OMini简介

OpenAI从GPT-4V到GPT-4O,再到GPT-4OMini简介
一、引言
在人工智能领域,OpenAI的GPT系列模型一直是自然语言处理的标杆。随着技术的不断进步,OpenAI推出了多个版本的GPT模型,包括视觉增强的GPT-4V(GPT-4 with Vision)、优化版的GPT-4O(GPT-4 Optimized)以及适用于资源受限环境的轻量级版本GPT-4OMini(GPT-4 Optimized Mini)。本文将详细介绍这些模型,并深入探讨GPT-4OMini背后的技术栈。通过公式和代码示例,我们将全面了解这些模型的构建原理和实现细节。
二、GPT-4V:视觉增强的GPT-4
1. 概述
GPT-4V是GPT-4的视觉增强版本,它能够处理和生成图像信息,进一步扩展了GPT模型的应用范围。GPT-4V在语言理解的基础上加入了视觉处理能力,使其在多模态任务中表现出色。
2. 技术细节
GPT-4V结合了Transformer模型和卷积神经网络(CNN),能够同时处理文本和图像数据。模型的架构如下图所示:
import torch
import torch.nn as nn
import torch.nn.functional as Fclass VisionEncoder(nn.Module):def __init__(self):super(VisionEncoder, self).__init__()self.conv = nn.Conv2d(in_channels=3, out_channels=64, kernel_size=3, stride=1, padding=1)self.pool = nn.MaxPool2d(kernel_size=2, stride=2)def forward(self, x):x = self.pool(F.relu(self.conv(x)))return xclass GPT4V(nn.Module):def __init__(self):super(GPT4V, self).__init__()self.vision_encoder = VisionEncoder()self.transformer = nn.Transformer(d_model=512, nhead=8, num_encoder_layers=6)def forward(self, image, text):vision_features = self.vision_encoder(image)text_features = self.transformer(text)combined_features = torch.cat((vision_features, text_features), dim=1)return combined_features
视觉处理模块
视觉处理模块使用卷积神经网络(CNN)来提取图像特征。这些特征通过一系列卷积层和池化层进行处理,最终形成图像的高层次表示。
Transformer
Transformer模块用于处理文本输入,并结合来自视觉模块的图像特征。文本和图像特征通过拼接或加权平均的方式进行融合。
3. 应用场景
GPT-4V在视觉问答、图像生成、图文配对等任务中表现出色。例如,在图像描述生成任务中,GPT-4V能够根据输入图像生成相应的描述文字。
三、GPT-4O:优化版GPT-4
1. 概述
GPT-4O是GPT-4的优化版本,旨在提高模型的计算效率和推理速度。GPT-4O在保持原有模型性能的前提下,通过优化算法和架构设计实现了更高的效率。
2. 技术细节
a. 权重共享(Weight Sharing)
权重共享是一种减少模型参数数量的方法,通过在模型的不同层之间共享参数来降低计算和存储成本。
import torch
import torch.nn as nnclass OptimizedTransformer(nn.Module):def __init__(self, d_model, nhead, num_layers):super(OptimizedTransformer, self).__init__()self.transformer = nn.Transformer(d_model, nhead, num_layers)# 使用权重共享优化self.shared_weights = nn.Parameter(torch.randn(d_model, d_model))def forward(self, src, tgt):src = src @ self.shared_weightstgt = tgt @ self.shared_weightsreturn self.transformer(src, tgt)
b. 参数剪枝(Parameter Pruning)
参数剪枝通过移除神经网络中对最终输出影响较小的权重,从而减少模型的参数数量。剪枝可以是非结构化剪枝(去除单个权重)或结构化剪枝(去除整个神经元或通道)。
import torch
import torch.nn.utils.prune as prune# 假设我们有一个简单的线性层
linear = torch.nn.Linear(10, 5)# 应用全局剪枝,保留50%的权重
prune.global_unstructured([(linear, 'weight')],pruning_method=prune.L1Unstructured,amount=0.5,
)# 检查剪枝后的权重
print(linear.weight)
c. 注意力机制优化(Attention Mechanism Optimization)
通过引入更高效的注意力计算方法,如线性注意力(Linear Attention),可以显著减少计算复杂度。
import torch
import torch.nn as nnclass LinearAttention(nn.Module):def __init__(self, d_model):super(LinearAttention, self).__init__()self.query = nn.Linear(d_model, d_model)self.key = nn.Linear(d_model, d_model)self.value = nn.Linear(d_model, d_model)def forward(self, x):Q = self.query(x)K = self.key(x)V = self.value(x)attention_weights = torch.bmm(Q, K.transpose(1, 2)) / x.size(-1)**0.5attention = torch.bmm(attention_weights, V)return attention
3. 应用场景
GPT-4O适用于需要高效推理和低延迟的场景,例如实时翻译、智能助手和大规模文本处理任务。
四、GPT-4OMini:轻量级GPT-4
1. 概述
GPT-4OMini是GPT-4O的轻量级版本,专为资源受限环境设计。它在保持高效性能的同时,大幅度减少了模型的参数数量和计算复杂度,使其适用于移动设备、嵌入式系统等场景。
2. 技术细节
a. 模型压缩技术
GPT-4OMini背后的一个关键技术是模型压缩。模型压缩技术包括以下几种方法:
参数剪枝(Parameter Pruning)同上
参数剪枝通过移除神经网络中对最终输出影响较小的权重,从而减少模型的参数数量。常见的剪枝方法有基于阈值的剪枝和结构化剪枝。
import torch
import torch.nn.utils.prune as prune# 假设我们有一个简单的线性层
linear = torch.nn.Linear(10, 5)# 应用全局剪枝,保留50%的权重
prune.global_unstructured([(linear, 'weight')],pruning_method=prune.L1Unstructured,amount=0.5,
)# 检查剪枝后的权重
print(linear.weight)
知识蒸馏(Knowledge Distillation)
知识蒸馏通过训练一个较小的学生模型去学习较大教师模型的行为,从而使小模型能够在保留大模型性能的前提下大幅度减小规模。
import torch.nn.functional as F# 定义教师模型和学生模型
teacher_model = GPT4Model()
student_model = GPT4MiniModel()# 假设我们有输入数据x和标签y
x, y = get_data()# 教师模型输出
with torch.no_grad():teacher_output = teacher_model(x)# 学生模型输出
student_output = student_model(x)# 蒸馏损失
loss = F.kl_div(F.log_softmax(student_output / temperature, dim=1),F.softmax(teacher_output / temperature, dim=1),reduction='batchmean'
)# 反向传播和优化
optimizer.zero_grad()
loss.backward()
optimizer.step()
量化(Quantization)
量化通过将模型的权重和激活从高精度表示(如32位浮点数)转换为低精度表示(如8位整数),从而减少模型的存储和计算需求。
import torch.quantization# 定义模型
model = GPT4Model()# 准备模型进行量化
model.qconfig = torch.quantization.default_qconfig
torch.quantization.prepare(model, inplace=True)# 校准模型
calibrate_model(model, calibration_data)# 转换模型为量化版本
torch.quantization.convert(model, inplace=True)# 检查量化后的模型
print(model)
b. 高效的模型架构设计
GPT-4OMini采用了更高效的模型架构设计,以在不显著牺牲性能的前提下减少计算量。例如,它可能会使用更少的Transformer层、更小的隐藏层尺寸和更少的注意力头。
import torch
import torch.nn as nnclass MiniTransformer(nn.Module):def __init__(self, d_model, nhead, num_layers):super(MiniTransformer, self).__init__()self.transformer = nn.Transformer(d_model, nhead, num_layers)def forward(self, src, tgt):return self.transformer(src, tgt)# 初始化一个较小的Transformer模型
model = MiniTransformer(d_model=128, nhead=4, num_layers=2)
c. 硬件加速与并行计算
GPT-4OMini还通过硬件加速和并行计算进一步提高效率。利用现代GPU、TPU等硬件加速器,以及分布式计算技术,可以显著加速模型训练和推理过程。
import torch
import torch.nn as nn
import torch.distributed as dist# 初始化分布式环境
dist.init_process_group("gloo", rank=rank, world_size=world_size)# 定义模型
model = GPT4Model().to(device)# 包装为分布式数据并行模型
model = nn.parallel.DistributedDataParallel(model)# 定义数据加载器和优化器
data_loader = get_data_loader()
optimizer = torch.optim.Adam(model.parameters())# 训练循环
for epoch in range(num_epochs):for batch in data_loader:optimizer.zero_grad()outputs = model(batch)loss = compute_loss(outputs, batch.labels)loss.backward()optimizer.step()
3. 应用场景
GPT-4OMini适用于需要轻量级、高效的自然语言处理任务的场景,如移动应用、智能家居设备和边缘计算。
五、结论
从GPT-4V到GPT-4O,再到GPT-4OMini,这些模型代表了OpenAI在自然语言处理和多模态处理方面的最新进展。通过结合先进的技术和优化方法,这些模型在不同应用场景中展示了强大的能力。GPT-4OMini特别适合资源受限的环境,具有广泛的应用前景。希望本文的详细介绍能够帮助读者更好地理解这些模型的构建原理和实现方法。
随着技术的不断发展,我们可以期待更多创新的轻量级模型出现在各类实际应用中,推动人工智能技术的普及和应用。
相关文章:
OpenAI从GPT-4V到GPT-4O,再到GPT-4OMini简介
OpenAI从GPT-4V到GPT-4O,再到GPT-4OMini简介 一、引言 在人工智能领域,OpenAI的GPT系列模型一直是自然语言处理的标杆。随着技术的不断进步,OpenAI推出了多个版本的GPT模型,包括视觉增强的GPT-4V(GPT-4 with Vision&…...
从人工巡检到智能防控:智慧油气田安全生产的新视角
一、背景需求 随着科技的飞速发展,视频监控技术已成为各行各业保障安全生产、提升管理效率的重要手段。特别是在油气田这一特殊领域,由于其工作环境复杂、安全风险高,传统的监控方式已难以满足实际需求。因此,基于视频监控AI智能…...
【黑马java基础】Lamda, 方法引用,集合{Collection(List, Set), Map},Stream流
文章目录 JDK8新特性:Lambda表达式认识Lambda表达式Lambda表达式的省略规则 JDK8新特性:方法引用静态方法的引用实例方法的引用特定类型方法的引用构造器的应用 集合➡️Collection单列集合体系Collection的常用方法Collection的遍历方法迭代器增强for循…...
Stable Diffusion 使用详解(1)---- 提示词及相关参数
目录 背景 提示词 内容提示词 人物及主体特征 场景 环境光照 画幅视角 注意事项及示例 标准化提示词 画质等级 风格与真实性 具体要求 背景处理 光线与色彩 负向提示词 小结 常用工具 另外几个相关参数 迭代步数 宽度与高度 提示词引导系数 图片数量 背景…...
数据结构和算法(刷题) - 无序数组排序后的最大相邻差
无序数组排序后的最大相邻差 问题:一个无序的整型数组,求出该数组排序后的任意两个相邻元素的最大差值?要求时间和空间复杂度尽可能低。 三种方法: 排序后计算比较 简介:用任意一种时间复杂度为 O ( n log n ) O…...
HOW - React 处理不紧急的更新和渲染
目录 useDeferredValueuseTransitionuseIdleCallback 在 React 中,有一些钩子函数可以帮助你处理不紧急的更新或渲染,从而优化性能和用户体验。 以下是一些常用的相关钩子及其应用场景: useDeferredValue 用途:用于处理高优先级…...
基于A律压缩的PCM脉冲编码调制通信系统simulink建模与仿真
目录 1.算法运行效果图预览 2.算法运行软件版本 3.部分核心程序 4.算法理论概述 4.1A律压缩的原理 4.2 PCM编码过程 4.3 量化噪声与信噪比 5.算法完整程序工程 1.算法运行效果图预览 (完整程序运行后无水印) 2.算法运行软件版本 matlab2022a 3.部分核心程序 &#…...
【入门教程一】基于DE2-115的My First FPGA 工程
1.1. 概述 这是一个简单的练习, 可以帮助初学者开始了解如何使用Intel Quartus 软件进行 FPGA 开发。 在本章节中,您将学习如何编译 Verilog 代码,进行引脚分配,创建时序约束,然后对 FPGA 进行编程,驱动开…...
mysql中的索引和分区
目录 1.编写目的 2.索引 2.1 创建方法 2.2 最佳适用 2.3 索引相关语句 3.分区 3.1 创建方法 3.2 最佳适用 Welcome to Code Blocks blog 本篇文章主要介绍了 [Mysql中的分区和索引] ❤博主广交技术好友,喜欢文章的可以关注一下❤ 1.编写目的 在MySQL中&…...
项目实战--C#实现图书馆信息管理系统
本项目是要开发一个图书馆管理系统,通过这个系统处理常见的图书馆业务。这个系统主要功能是:(1)有客户端(借阅者使用)和管理端(图书馆管理员和系统管理员使用)。(2&#…...
信号【Linux】
文章目录 信号处理方式(信号递达)前后台进程 终端按键产生信号kill系统调用接口向进程发信号阻塞信号sigset_tsigprocmasksigpending内核态与用户态:内核空间与用户空间内核如何实现信号的捕捉 1、信号就算没有产生,进程也必须识别…...
Kafka Producer之ACKS应答机制
文章目录 1. 应答机制2. 等级03. 等级14. 等级all5. 设置等级6. ISR 1. 应答机制 异步发送的效率高,但是不安全,同步发送安全,但是效率低。 无论哪一种,有一个关键的步骤叫做回调,也就是ACKS应答机制。 其中ACKS也分…...
【深入理解SpringCloud微服务】深入理解Eureka核心原理
深入理解Eureka核心原理 Eureka整体设计Eureka服务端启动Eureka三级缓存Eureka客户端启动 Eureka整体设计 Eureka是一个经典的注册中心,通过http接收客户端的服务发现和服务注册请求,使用内存注册表保存客户端注册上来的实例信息。 Eureka服务端接收的…...
算法——滑动窗口(day7)
904.水果成篮 904. 水果成篮 - 力扣(LeetCode) 题目解析: 根据题意我们可以看出给了我们两个篮子说明我们在开始采摘到结束的过程中只能有两种水果的种类,又要求让我们返回收集水果的最大数目,这不难让我们联想到题目…...
Django学习第一天(如何创建和运行app)
前置知识: URL组成部分详解: 一个url由以下几部分组成: scheme://host:port/path/?query-stringxxx#anchor scheme:代表的是访问的协议,一般为http或者ftp等 host:主机名,域名,…...
VScode连接虚拟机运行Python文件的方法
声明:本文使用Linux发行版本为rocky_9.4 目录 1. 在rocky_9.4最小安装的系统中,默认是没有tar工具的,因此,要先下载tar工具 2. 在安装好的vscode中下载ssh远程插件工具 3. 然后连接虚拟机 4. 查看python是否已经安装 5. 下载…...
通义千问AI模型对接飞书机器人-模型配置(2-1)
一 背景 根据业务或者使用场景搭建自定义的智能ai模型机器人,可以较少我们人工回答的沟通成本,而且可以更加便捷的了解业务需求给出大家设定的业务范围的回答,目前基于阿里云的通义千问模型研究。 二 模型研究 参考阿里云帮助文档…...
[k8s源码]6.reflector
Reflector 和 Informer 是 Kubernetes 客户端库中两个密切相关但职责不同的组件。Reflector 是一个较低级别的组件,主要负责与 Kubernetes API 服务器进行交互,执行资源的初始列表操作和持续的监视操作,将获取到的数据放入队列中。而 Informe…...
前台文本直接取数据库值doFieldSQL插入SQL
实现功能:根据选择的车间主任带出角色。 实现步骤:OA的“字段联动”功能下拉选项带不出表“hrmrolemembers”,所以采用此方法。 doFieldSQL("select roleid from HrmResource as a inner join hrmrolemembers as b on a.id b.resource…...
【06】LLaMA-Factory微调大模型——微调模型评估
上文【05】LLaMA-Factory微调大模型——初尝微调模型,对LLama-3与Qwen-2进行了指令微调,本文则介绍如何对微调后的模型进行评估分析。 一、部署微调后的LLama-3模型 激活虚拟环境,打开LLaMA-Factory的webui页面 conda activate GLM cd LLa…...
生成xcframework
打包 XCFramework 的方法 XCFramework 是苹果推出的一种多平台二进制分发格式,可以包含多个架构和平台的代码。打包 XCFramework 通常用于分发库或框架。 使用 Xcode 命令行工具打包 通过 xcodebuild 命令可以打包 XCFramework。确保项目已经配置好需要支持的平台…...
ETLCloud可能遇到的问题有哪些?常见坑位解析
数据集成平台ETLCloud,主要用于支持数据的抽取(Extract)、转换(Transform)和加载(Load)过程。提供了一个简洁直观的界面,以便用户可以在不同的数据源之间轻松地进行数据迁移和转换。…...
3-11单元格区域边界定位(End属性)学习笔记
返回一个Range 对象,只读。该对象代表包含源区域的区域上端下端左端右端的最后一个单元格。等同于按键 End 向上键(End(xlUp))、End向下键(End(xlDown))、End向左键(End(xlToLeft)End向右键(End(xlToRight)) 注意:它移动的位置必须是相连的有内容的单元格…...
基于Java Swing的电子通讯录设计与实现:附系统托盘功能代码详解
JAVASQL电子通讯录带系统托盘 一、系统概述 本电子通讯录系统采用Java Swing开发桌面应用,结合SQLite数据库实现联系人管理功能,并集成系统托盘功能提升用户体验。系统支持联系人的增删改查、分组管理、搜索过滤等功能,同时可以最小化到系统…...
SQL慢可能是触发了ring buffer
简介 最近在进行 postgresql 性能排查的时候,发现 PG 在某一个时间并行执行的 SQL 变得特别慢。最后通过监控监观察到并行发起得时间 buffers_alloc 就急速上升,且低水位伴随在整个慢 SQL,一直是 buferIO 的等待事件,此时也没有其他会话的争抢。SQL 虽然不是高效 SQL ,但…...
免费数学几何作图web平台
光锐软件免费数学工具,maths,数学制图,数学作图,几何作图,几何,AR开发,AR教育,增强现实,软件公司,XR,MR,VR,虚拟仿真,虚拟现实,混合现实,教育科技产品,职业模拟培训,高保真VR场景,结构互动课件,元宇宙http://xaglare.c…...
离线语音识别方案分析
随着人工智能技术的不断发展,语音识别技术也得到了广泛的应用,从智能家居到车载系统,语音识别正在改变我们与设备的交互方式。尤其是离线语音识别,由于其在没有网络连接的情况下仍然能提供稳定、准确的语音处理能力,广…...
【UE5 C++】通过文件对话框获取选择文件的路径
目录 效果 步骤 源码 效果 步骤 1. 在“xxx.Build.cs”中添加需要使用的模块 ,这里主要使用“DesktopPlatform”模块 2. 添加后闭UE编辑器,右键点击 .uproject 文件,选择 "Generate Visual Studio project files",重…...
高端性能封装正在突破性能壁垒,其芯片集成技术助力人工智能革命。
2024 年,高端封装市场规模为 80 亿美元,预计到 2030 年将超过 280 亿美元,2024-2030 年复合年增长率为 23%。 细分到各个终端市场,最大的高端性能封装市场是“电信和基础设施”,2024 年该市场创造了超过 67% 的收入。…...
【版本控制】GitHub Desktop 入门教程与开源协作全流程解析
目录 0 引言1 GitHub Desktop 入门教程1.1 安装与基础配置1.2 核心功能使用指南仓库管理日常开发流程分支管理 2 GitHub 开源协作流程详解2.1 Fork & Pull Request 模型2.2 完整协作流程步骤步骤 1: Fork(创建个人副本)步骤 2: Clone(克隆…...
