当前位置: 首页 > news >正文

通义千问AI模型对接飞书机器人-模型配置(2-1)

一 背景

根据业务或者使用场景搭建自定义的智能ai模型机器人,可以较少我们人工回答的沟通成本,而且可以更加便捷的了解业务需求给出大家设定的业务范围的回答,目前基于阿里云的通义千问模型研究。

二 模型研究

参考阿里云帮助文档:

https://help.aliyun.com/document_detail/2784263.html

https://help.aliyun.com/document_detail/2784278.html?spm=a2c4g.2779977.0.0.41c247904gVRRu

https://help.aliyun.com/zh/model-studio/user-guide/model-tools/?spm=a2c4g.11186623.0.0.451d5f17l5DF7U

1.通过阿里云百炼平台构建我们的应用模型

2.搭建我们的数据中心&知识库

3.创建应用,关联知识库文档做模型

1、模型概览

模型服务模型名称模型描述备注
通义千问qwen-longqwen-long是在通义千问针对超长上下文处理场景的大语言模型,支持中文、英文等不同语言输入,支持最长1000万tokens(约1500万字或1.5万页文档)的超长上下文对话。配合同步上线的文档服务,可支持word、pdf、markdown、epub、mobi等多种文档格式的解析和对话。
qwen-turbo通义千问超大规模语言模型,支持中文、英文等不同语言输入。百炼平台支持,智能思考度偏低响应较快
qwen-plus通义千问超大规模语言模型增强版,支持中文、英文等不同语言输入。百炼平台支持,兼顾智能思考跟响应的
qwen-max通义千问千亿级别超大规模语言模型,支持中文、英文等不同语言输入。随着模型的升级,qwen-max将滚动更新。如果希望使用固定版本,请使用历史快照版本。当前qwen-max模型与qwen-max-0428快照版本等价,均为最新版本的qwen-max模型,同时也是当前通义千问2.5产品版本背后的API模型。百炼平台支持,智能思考度较高响应较慢
qwen-max-0428通义千问千亿级别超大规模语言模型,支持中文、英文等不同语言输入。该模型为qwen-max的2024年4月28号的历史快照稳定版本,预期维护到下个快照版本发布时间(待定)后一个月。
qwen-max-0403通义千问千亿级别超大规模语言模型,支持中文、英文等不同语言输入。该模型为qwen-max的2024年4月3号的历史快照稳定版本,预期维护到下个快照版本发布时间(待定)后一个月。
qwen-max-0107通义千问千亿级别超大规模语言模型,支持中文、英文等不同语言输入。该模型为qwen-max的2024年1月7号的历史快照稳定版本,仅推荐特定需求客户访问。
qwen-max-1201通义千问千亿级别超大规模语言模型,支持中文、英文等不同语言输入。该模型为qwen-max的2023年12月1号的历史快照稳定版本,预期维护到下个快照版本发布时间(待定)后一个月。
qwen-max-longcontext通义千问千亿级别超大规模语言模型,支持中文、英文等不同语言输入。

通义千问千亿级别超大规模语言模型,支持中文、英文等不同语言输入。随着模型的升级,qwen-max将滚动更新。如果希望使用固定版本,请使用历史快照版本。当前qwen-max模型与qwen-max-0428快照版本等价,均为最新版本的qwen-max模型,同时也是当前通义千问2.5产品版本背后的API模型。百炼平台支持,智能思考度较高响应较慢
qwen-max-0428通义千问千亿级别超大规模语言模型,支持中文、英文等不同语言输入。该模型为qwen-max的2024年4月28号的历史快照稳定版本,预期维护到下个快照版本发布时间(待定)后一个月。
qwen-max-0403通义千问千亿级别超大规模语言模型,支持中文、英文等不同语言输入。该模型为qwen-max的2024年4月3号的历史快照稳定版本,预期维护到下个快照版本发布时间(待定)后一个月。
qwen-max-0107通义千问千亿级别超大规模语言模型,支持中文、英文等不同语言输入。该模型为qwen-max的2024年1月7号的历史快照稳定版本,仅推荐特定需求客户访问。
qwen-max-1201通义千问千亿级别超大规模语言模型,支持中文、英文等不同语言输入。该模型为qwen-max的2023年12月1号的历史快照稳定版本,预期维护到下个快照版本发布时间(待定)后一个月。
qwen-max-longcontext通义千问千亿级别超大规模语言模型,支持中文、英文等不同语言输入。

2、AI应用步骤搭建

Step 1:数据管理-导入数据

 

Step 2:创建知识索引

选择导入数据到知识库

 获取知识索引ID,支持与百炼Assistant API结合使用,支持RAG和插件的组合调用;

 查看切割文档

Step 3:创建应用

进入我的应用后,点击新增应用。然后在应用配置中,进行以下几步操作:

  1. 选择模型。目前仅支持qwen-max模型,后续将支持更多的模型。同时,也可以支持设置模型内容生成的相关参数,如temperature等。

  2. 开启“知识检索增强”。

  3. 选择知识库,即在Step2中创建的知识索引。

  4. 点击“保存并发布”按钮。

 

4、测试AI应用

4.1 简单问题

4.2、自定义插件

在某些场景下,我们除了需要根据文档回答问题之外,还需要根据我们自定义的内容给出答案,例如查询公司某些业务的数据项,指标项等,这些三方ai无法清除,那么我们就可以通过自定义插件。

 创建自定义插件

 

 5 SDK对接

1、获取应用appid apikey

2、对接的地址

5.1、普通请求
@RequestMapping(value = "/ask/test")
public AssistantResp ask(@RequestBody AssistantReq req) {long l = System.currentTimeMillis();log.info("ask start={} message={}", l, req.getMessage());try {if (req.getMessage() == null || req.getMessage().trim().length() == 0) {return AssistantResp.builder().message("请输入问题").build();}ApplicationParam param = ApplicationParam.builder().apiKey("sk-&&&&&&&&").appId("f8a%%%%%%%%%%%%%%").prompt(req.getMessage()).sessionId(req.getSessionId()).temperature(0.5F).build();Application application = new Application();ApplicationResult result = application.call(param);log.info("result={}", JSONUtil.toJsonStr(result));AssistantResp ask = AssistantResp.builder().message(result.getOutput().getText()).build();log.info("请求耗时:{}", System.currentTimeMillis() - l);log.info("ask end={},message={}", System.currentTimeMillis(), ask.getMessage());return ask;} catch (Exception e) {return AssistantResp.builder().message("系统繁忙,请稍后再试").build();}}
5.2 流式响应
@RequestMapping(value = "/stream", produces = MediaType.TEXT_EVENT_STREAM_VALUE)
public ResponseEntity<StreamingResponseBody> stream(@RequestBody AssistantReq req) {try {ApplicationParam param = ApplicationParam.builder().apiKey("sk-&&&&&&&&&&").appId("**************").prompt(req.getMessage()).incrementalOutput(true).build();Application application = new Application();Flowable<ApplicationResult> resultFlowable = application.streamCall(param);StreamingResponseBody responseBody = outputStream -> {resultFlowable.blockingForEach(data -> {String content = data.getOutput().getText();log.info("content={}",content);outputStream.write(content.getBytes());outputStream.flush(); // 确保数据立即发送});};return ResponseEntity.ok().body(responseBody);} catch (NoApiKeyException e) {e.printStackTrace();} catch (InputRequiredException e) {e.printStackTrace();}return ResponseEntity.ok().body(null);
}
5.3 多轮会话
public void answer(String askStr,String tenantKey,String openId) throws Exception {//通过openId 获取 sessionIdString sessionId = map.get(openId);log.info("askStr start={}",askStr);ApplicationParam param = ApplicationParam.builder().apiKey("sk-b**********").appId("f**************").prompt(askStr).sessionId(sessionId).build();log.info("param={}",JSONUtil.toJsonStr(param));Application application = new Application();ApplicationResult result = application.call(param);if(result.getOutput().getSessionId()!=null){map.put(openId,result.getOutput().getSessionId());}String text = result.getOutput().getText();}

下一篇:通义千问AI模型对接飞书机器人-集成飞书机器人(2-2)-CSDN博客

相关文章:

通义千问AI模型对接飞书机器人-模型配置(2-1)

一 背景 根据业务或者使用场景搭建自定义的智能ai模型机器人&#xff0c;可以较少我们人工回答的沟通成本&#xff0c;而且可以更加便捷的了解业务需求给出大家设定的业务范围的回答&#xff0c;目前基于阿里云的通义千问模型研究。 二 模型研究 参考阿里云帮助文档&#xf…...

[k8s源码]6.reflector

Reflector 和 Informer 是 Kubernetes 客户端库中两个密切相关但职责不同的组件。Reflector 是一个较低级别的组件&#xff0c;主要负责与 Kubernetes API 服务器进行交互&#xff0c;执行资源的初始列表操作和持续的监视操作&#xff0c;将获取到的数据放入队列中。而 Informe…...

前台文本直接取数据库值doFieldSQL插入SQL

实现功能&#xff1a;根据选择的车间主任带出角色。 实现步骤&#xff1a;OA的“字段联动”功能下拉选项带不出表“hrmrolemembers”&#xff0c;所以采用此方法。 doFieldSQL("select roleid from HrmResource as a inner join hrmrolemembers as b on a.id b.resource…...

【06】LLaMA-Factory微调大模型——微调模型评估

上文【05】LLaMA-Factory微调大模型——初尝微调模型&#xff0c;对LLama-3与Qwen-2进行了指令微调&#xff0c;本文则介绍如何对微调后的模型进行评估分析。 一、部署微调后的LLama-3模型 激活虚拟环境&#xff0c;打开LLaMA-Factory的webui页面 conda activate GLM cd LLa…...

数学建模学习(1)遗传算法

一、简介 遗传算法&#xff08;Genetic Algorithm, GA&#xff09;是一种用于解决优化和搜索问题的进化算法。它基于自然选择和遗传学原理&#xff0c;通过模拟生物进化过程来寻找最优解。 以下是遗传算法的主要步骤和概念&#xff1a; 初始化种群&#xff08;Initialization&a…...

NumPy冷知识66个

NumPy冷知识66个 多维切片: NumPy支持多维切片&#xff0c;可以通过指定多个索引来提取多维数组的子集。 复杂数支持: NumPy可以处理复数&#xff0c;提供了复数的基本运算和函数。 比特运算: NumPy支持比特运算&#xff0c;如与、或、异或等。 数据存储格式: NumPy可以将数…...

Wi-SUN无线通信技术 — 大规模分散式物联网应用首选

引言 在数字化浪潮的推动下&#xff0c;物联网&#xff08;IoT&#xff09;正逐渐渗透到我们生活的方方面面。Wi-SUN技术以其卓越的性能和广泛的应用前景&#xff0c;成为了大规模分散式物联网应用的首选。本文将深入探讨Wi-SUN技术的市场现状、核心优势、实际应用中的案例以及…...

在 Ubuntu Server 22.04 上安装 Docker 的详细步骤

在 Ubuntu Server 22.04 上安装 Docker 的详细步骤 本文档详细记录了在 Ubuntu Server 22.04 上安装 Docker 的完整过程&#xff0c;包括解决过程中遇到的问题。希望能对读者有所帮助。 安装过程&#xff0c;重点需要看官方文档。https://docs.docker.com/engine/install/ubu…...

前端使用 Konva 实现可视化设计器(18)- 素材嵌套 - 加载阶段

本章主要实现素材的嵌套&#xff08;加载阶段&#xff09;这意味着可以拖入画布的对象&#xff0c;不只是图片素材&#xff0c;还可以是嵌套的图片和图形。 请大家动动小手&#xff0c;给我一个免费的 Star 吧~ 大家如果发现了 Bug&#xff0c;欢迎来提 Issue 哟~ github源码 g…...

vue3 -layui项目-左侧导航菜单栏

1.创建目录结构 进入cmd,先cd到项目目录&#xff08;项目vue3-project&#xff09; cd vue3-project mkdir -p src\\views\\home\\components\\menubar 2.创建组件文件 3.编辑menu-item-content.vue <template><template v-if"item.icon"><lay-ic…...

Spring AOP(1)

目录 一、AOP 概述 什么是Spring AOP&#xff1f; 二、Spring AOP 快速入门 1、引入AOP依赖 2、编写AOP程序 三、Spring AOP 详解 1、Spring AOP的核心概念 &#xff08;1&#xff09;切点&#xff08;Pointcut&#xff09; &#xff08;2&#xff09;连接点&#xff…...

第1关 -- Linux 基础知识

闯关任务 完成SSH连接与端口映射并运行hello_world.py ​​​​ ssh -p 37367 rootssh.intern-ai.org.cn -CNg -L 7860:127.0.0.1:7860 -o StrictHostKeyCheckingno可选任务 1 将Linux基础命令在开发机上完成一遍 可选任务 2 使用 VSCODE 远程连接开发机并创建一个conda环境 …...

tensorflow keras Model.fit returning: ValueError: Unrecognized data type

题意&#xff1a;TensorFlow Keras 的 Model.fit 方法返回了一个 ValueError&#xff0c;提示数据类型无法识别 问题背景&#xff1a; Im trying to train a keras model with 2 inputs: an image part thats a tf.data.Dataset and a nor mal part represented by a pd.DataF…...

虚拟机固定配置IP

在Hyper-V中&#xff0c;vEthernet (Default Switch) 是Hyper-V自带的默认虚拟交换机&#xff0c;它允许虚拟机直接连接到宿主机网络或外部网络。这个虚拟交换机可以通过Hyper-V管理器或PowerShell等工具进行管理和配置。以下是具体的操作步骤&#xff1a; 一、通过Hyper-V管理…...

【Pytorch实用教程】pytorch中random_split用法的详细介绍

在 PyTorch 中,torch.utils.data.random_split 是一个非常有用的函数,用于将数据集随机分割成多个子集。这在机器学习和深度学习中非常常见,特别是当你需要将数据集分割成训练集和测试集或验证集时。这里是 random_split 的详细用法介绍: 功能 random_split 用于随机地将…...

第二讲:NJ网络配置

Ethernet/IP网络拓扑结构 一. NJ EtherNet/IP 1、网络端口位置 NJ的CPU上面有两个RJ45的网络接口,其中一个是EtherNet/IP网络端口(另一个是EtherCAT的网络端口) 2、网络作用 如图所示,EtherNet/IP网络既可以做控制器与控制器之间的通信,也可以实现与上位机系统的对接通…...

pytorch中常见的模型3种组织方式 nn.Sequential(OrderedDict)

在nn.Sequential中嵌套OrderedDict组织网络,以对层进行命名 import torch import torch.nn as nn from collections import OrderedDictclass OrderedDictCNN(nn.Module):def __init__(self):super(OrderedDictCNN, self).__init__()# 使用 OrderedDict 定义网络层self.model …...

达梦数据库DM8-索引篇

目录 一、前景二、名词三、语法1、命令方式创建索引1.1 创建索引空间1.2.1 创建普通索引并指定索引数据空间1.2.2 另一种没验证&#xff0c;官方写法1.3 复合索引1.4 唯一索引1.5 位图索引1.6 函数索引 2、创建表时候创建索引3、可视化方式创建索引3.1 打开DM管理工具3.2 找到要…...

【中项】系统集成项目管理工程师-第4章 信息系统架构-4.5技术架构

前言&#xff1a;系统集成项目管理工程师专业&#xff0c;现分享一些教材知识点。觉得文章还不错的喜欢点赞收藏的同时帮忙点点关注。 软考同样是国家人社部和工信部组织的国家级考试&#xff0c;全称为“全国计算机与软件专业技术资格&#xff08;水平&#xff09;考试”&…...

随机梯度下降 (Stochastic Gradient Descent, SGD)

SGD 是梯度下降法的一种变体。与批量梯度下降法不同&#xff0c;SGD 在每次迭代中仅使用一个样本&#xff08;或一个小批量样本&#xff09;的梯度来更新参数。它能更快地更新参数&#xff0c;并且可以更容易地跳出局部最优解。 原理 SGD 的基本思想是通过在每次迭代中使用不…...

MPNet:旋转机械轻量化故障诊断模型详解python代码复现

目录 一、问题背景与挑战 二、MPNet核心架构 2.1 多分支特征融合模块(MBFM) 2.2 残差注意力金字塔模块(RAPM) 2.2.1 空间金字塔注意力(SPA) 2.2.2 金字塔残差块(PRBlock) 2.3 分类器设计 三、关键技术突破 3.1 多尺度特征融合 3.2 轻量化设计策略 3.3 抗噪声…...

MySQL 隔离级别:脏读、幻读及不可重复读的原理与示例

一、MySQL 隔离级别 MySQL 提供了四种隔离级别,用于控制事务之间的并发访问以及数据的可见性,不同隔离级别对脏读、幻读、不可重复读这几种并发数据问题有着不同的处理方式,具体如下: 隔离级别脏读不可重复读幻读性能特点及锁机制读未提交(READ UNCOMMITTED)允许出现允许…...

学习STC51单片机31(芯片为STC89C52RCRC)OLED显示屏1

每日一言 生活的美好&#xff0c;总是藏在那些你咬牙坚持的日子里。 硬件&#xff1a;OLED 以后要用到OLED的时候找到这个文件 OLED的设备地址 SSD1306"SSD" 是品牌缩写&#xff0c;"1306" 是产品编号。 驱动 OLED 屏幕的 IIC 总线数据传输格式 示意图 …...

uniapp微信小程序视频实时流+pc端预览方案

方案类型技术实现是否免费优点缺点适用场景延迟范围开发复杂度​WebSocket图片帧​定时拍照Base64传输✅ 完全免费无需服务器 纯前端实现高延迟高流量 帧率极低个人demo测试 超低频监控500ms-2s⭐⭐​RTMP推流​TRTC/即构SDK推流❌ 付费方案 &#xff08;部分有免费额度&#x…...

QT: `long long` 类型转换为 `QString` 2025.6.5

在 Qt 中&#xff0c;将 long long 类型转换为 QString 可以通过以下两种常用方法实现&#xff1a; 方法 1&#xff1a;使用 QString::number() 直接调用 QString 的静态方法 number()&#xff0c;将数值转换为字符串&#xff1a; long long value 1234567890123456789LL; …...

【学习笔记】深入理解Java虚拟机学习笔记——第4章 虚拟机性能监控,故障处理工具

第2章 虚拟机性能监控&#xff0c;故障处理工具 4.1 概述 略 4.2 基础故障处理工具 4.2.1 jps:虚拟机进程状况工具 命令&#xff1a;jps [options] [hostid] 功能&#xff1a;本地虚拟机进程显示进程ID&#xff08;与ps相同&#xff09;&#xff0c;可同时显示主类&#x…...

在web-view 加载的本地及远程HTML中调用uniapp的API及网页和vue页面是如何通讯的?

uni-app 中 Web-view 与 Vue 页面的通讯机制详解 一、Web-view 简介 Web-view 是 uni-app 提供的一个重要组件&#xff0c;用于在原生应用中加载 HTML 页面&#xff1a; 支持加载本地 HTML 文件支持加载远程 HTML 页面实现 Web 与原生的双向通讯可用于嵌入第三方网页或 H5 应…...

React---day11

14.4 react-redux第三方库 提供connect、thunk之类的函数 以获取一个banner数据为例子 store&#xff1a; 我们在使用异步的时候理应是要使用中间件的&#xff0c;但是configureStore 已经自动集成了 redux-thunk&#xff0c;注意action里面要返回函数 import { configureS…...

技术栈RabbitMq的介绍和使用

目录 1. 什么是消息队列&#xff1f;2. 消息队列的优点3. RabbitMQ 消息队列概述4. RabbitMQ 安装5. Exchange 四种类型5.1 direct 精准匹配5.2 fanout 广播5.3 topic 正则匹配 6. RabbitMQ 队列模式6.1 简单队列模式6.2 工作队列模式6.3 发布/订阅模式6.4 路由模式6.5 主题模式…...

uniapp 开发ios, xcode 提交app store connect 和 testflight内测

uniapp 中配置 配置manifest 文档&#xff1a;manifest.json 应用配置 | uni-app官网 hbuilderx中本地打包 下载IOS最新SDK 开发环境 | uni小程序SDK hbulderx 版本号&#xff1a;4.66 对应的sdk版本 4.66 两者必须一致 本地打包的资源导入到SDK 导入资源 | uni小程序SDK …...