HTTPS 的加密过程 详解
HTTP 由于是明文传输,所以安全上存在以下三个风险:
- 窃听风险,比如通信链路上可以获取通信内容。
- 篡改风险,比如通信内容被篡改。
- 冒充风险,比如冒充网站。
HTTPS 在 HTTP 与 TCP 层之间加入了 SSL/TLS
协议,可以很好的解决了上述的风险。
- 信息加密:防止窃听、信息被整个替换。采用混合加密方式。
- 校验机制:防止篡改、但不能防止信息被整个替换。采用摘要算法方式
- 身份证书:防止冒充。采用数字证书方式。
一、摘要算法——数字指纹
主要过程:
- 发送方对内容计算出一个「指纹」,然后同内容一起传输给对方。
- 接受方对内容也计算出一个「指纹」,然后跟发送方发送的「指纹」做一个比较。
- 如果「指纹」相同,说明内容没有被篡改,否则就可以判断出内容被篡改了。
常见摘要算法:MD5(消息摘要算法第五版)
- 输入任意长度的原文,经过处理(见下),输出为128位的信息(数字指纹);
- 不同的输入得到的不同的结果(唯一性);
MD5属不属于加密算法
- MD5不可逆,因为本质使用的是hash算法,在计算过程中原文的部分信息是丢失了的。(不同长度的原文,有可能得到相同的数字指纹。所以无法通过数字指纹得到原文,因为原文长度不固定。)
- MD5可破解:这个说法是因为一般我们需要加密的原文信息长度是固定(或者限制在一定范围内)的,比如用户密码规定长度在8~12位之间,所以存在破解的可能性。
MD5的处理过程
MD5以512位分组来处理输入的信息,且每一分组又被划分为16个32位子分组,经过了一系列的处理后,取出4个32位子分组组成,将这四个32位分组级联后将生成一个128位散列值。
二、非对称加密——数字签名
- 对称加密只使用一个密钥,运算速度快,密钥必须保密,无法做到安全的密钥交换。
- 非对称加密使用两个密钥:公钥和私钥,公钥可以任意分发而私钥保密,解决了密钥交换问题但速度慢。
非对称加密有两种形式:
- 公钥加密,私钥解密。这个目的是为了保证内容传输的安全,因为被公钥加密的内容,其他人是无法解密的,只有持有私钥的人,才能解密出实际的内容;
- (数字签名算法)私钥加密,公钥解密。这个目的是为了保证消息不会被冒充,因为私钥是不可泄露的,如果公钥能正常解密出私钥加密的内容,就能证明这个消息是来源于持有私钥身份的人发送的。
HTTPS非对称加密的用途主要在于通过「私钥加密,公钥解密」的方式,来确认消息的身份、也防止消息被整个替换,不过私钥加密内容不是内容本身,而是对内容的哈希值(数字指纹)加密。
三、数字证书——服务器公钥+CA数字签名
CA (数字证书认证机构)使用自己的私钥给服务器公钥加密。
四、对称加密——通信期间
- 在通信建立前采用非对称加密的方式交换「会话秘钥」,后续就不再使用非对称加密。
- 在通信过程中全部使用对称加密的「会话秘钥」的方式加密明文数据。
五、参考
小林coding
相关文章:

HTTPS 的加密过程 详解
HTTP 由于是明文传输,所以安全上存在以下三个风险: 窃听风险,比如通信链路上可以获取通信内容。篡改风险,比如通信内容被篡改。冒充风险,比如冒充网站。 HTTPS 在 HTTP 与 TCP 层之间加入了 SSL/TLS 协议,…...

spring整合mybatis,junit纯注解开发(包括连接druid报错的所有解决方法)
目录 Spring整合mybatis开发步骤 第一步:创建我们的数据表 第二步:编写对应的实体类 第三步:在pom.xml中导入我们所需要的坐标 spring所依赖的坐标 mybatis所依赖的坐标 druid数据源坐标 数据库驱动依赖 第四步:编写SpringC…...

ClusterIP、NodePort、LoadBalancer 和 ExternalName
Service 定义 在 Kubernetes 中,由于Pod 是有生命周期的,如果 Pod 重启它的 IP 可能会发生变化以及升级的时候会重建 Pod,我们需要 Service 服务去动态的关联这些 Pod 的 IP 和端口,从而使我们前端用户访问不受后端变更的干扰。 …...

【Day1415】Bean管理、SpringBoot 原理、总结、Maven 高级
0 SpringBoot 配置优先级 从上到下 虽然 springboot 支持多种格式配置文件,但是在项目开发时,推荐统一使用一种格式的配置 (yml是主流) 1 Bean管理 1.1 从 IOC 容器中获取 Bean 1.2 Bean 作品域 可以通过注解 Scope("proto…...

Git之repo sync -c与repo sync -dc用法区别(四十八)
简介: CSDN博客专家,专注Android/Linux系统,分享多mic语音方案、音视频、编解码等技术,与大家一起成长! 优质专栏:Audio工程师进阶系列【原创干货持续更新中……】🚀 优质专栏:多媒…...
vite + vue3 + uniapp 项目从零搭建
vite + vue3 + uniapp 项目从零搭建 1、创建项目1.1、创建Vue3/vite版Uniapp项目1.2、安装依赖1.3、运行项目2、弹出 用户隐私保护提示 方法2.1、更新用户隐私保护指引 和 修改配置文件2.2、授权结果处理方法3、修改`App.vue`文件内容4、处理报`[plugin:uni:mp-using-component…...
在CentOS中配置三个节点之间相互SSH免密登陆
在CentOS中配置三个节点(假设分别为node1、node2、node3)两两之间相互SSH免密登陆,可以按照以下步骤进行: 一、生成密钥对 在所有节点上生成密钥对: 在每个节点(node1、node2、node3)上执行以…...

arm 内联汇编基础
一、 Arm架构寄存器体系熟悉 基于arm neon 实现的代码有 intrinsic 和inline assembly 两种实现。 1.1 通用寄存器 arm v7 有 16 个 32-bit 通用寄存器,用 r0-r15 表示。 arm v8 有 31 个 64-bit 通用寄存器,用 x0-x30 表示,和 v7 不一样…...

Java语言程序设计——篇五(1)
数组 概述数组定义实例展示实战演练 二维数组定义数组元素的使用数组初始化器实战演练:矩阵计算 💫不规则二维数组实战演练:杨辉三角形 概述 ⚡️数组是相同数据类型的元素集合。各元素是有先后顺序的,它们在内存中按照这个先后顺…...

【香橙派开发板测试】:在黑科技Orange Pi AIpro部署YOLOv8深度学习纤维分割检测模型
文章目录 🚀🚀🚀前言一、1️⃣ Orange Pi AIpro开发板相关介绍1.1 🎓 核心配置1.2 ✨开发板接口详情图1.3 ⭐️开箱展示 二、2️⃣配置开发板详细教程2.1 🎓 烧录镜像系统2.2 ✨配置网络2.3 ⭐️使用SSH连接主板 三、…...

集成学习在数学建模中的应用
集成学习在数学建模中的应用 一、集成学习概述(一)基知(二)相关术语(三)集成学习为何能提高性能?(四)集成学习方法 二、Bagging方法(一)装袋&…...
WebKit 的 Web SQL 数据库:现代浏览器的本地存储解决方案
WebKit 的 Web SQL 数据库:现代浏览器的本地存储解决方案 随着Web应用的不断发展,对本地存储的需求也日益增加。WebKit作为许多现代浏览器的核心引擎,提供了一种强大的本地存储解决方案:Web SQL 数据库。本文将详细探讨Web SQL 数…...

Yolo-World网络模型结构及原理分析(三)——RepVL-PAN
提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档 文章目录 前言1. 网络结构2. 特征融合3. 文本引导(Text-guided)4. 图像池化注意力(Image-Pooling Attention)5. 区域文本匹配&…...

代码随想录——一和零(Leetcode474)
题目链接 0-1背包 class Solution {public int findMaxForm(String[] strs, int m, int n) {// 本题m,n为背包两个维度// dp[i][j]:最多右i个0和j个1的strs的最大子集大小int[][] dp new int[m 1][n 1];// 遍历strs中字符串for(String str : strs){int num0 …...
力扣题解(组合总和IV)
377. 组合总和 Ⅳ 给你一个由 不同 整数组成的数组 nums ,和一个目标整数 target 。请你从 nums 中找出并返回总和为 target 的元素组合的个数。 题目数据保证答案符合 32 位整数范围。 思路: 本题实质上是给一些数字,让他们在满足和是targ…...

Postgresql主键自增的方法
Postgresql主键自增的方法 一.方法(一) 使用 serial PRIMARY KEY 插入数据 二.方法(二) 🎈边走、边悟🎈迟早会好 一.方法(一) 使用 serial PRIMARY KEY 建表语句如下…...

【源码阅读】Sony的go breaker熔断器源码探究
文章目录 背景源码分析总结 背景 在微服务时代,服务和服务之间调用、跨部门调用都是很常见的事,但这些调用都存在很多不确定因素,如核心服务A依赖的部门B服务挂掉了,那么A本身的功能将会受到直接的影响,而这些都会影响…...
LeetCode题(66,69,35,88)--《c++》
66.加一 // // Created by wxj05 on 2024/7/20. // //法一 class Solution { public:vector<int> plusOne(vector<int>& digits) {bool carry true; // 进位标志for (int i digits.size() - 1; i > 0 && carry; --i) {digits[i] 1;carry digit…...

来参与“向日葵杯”全国教育仿真技术大赛~
可点击进行了解:“向日葵杯”全国教育仿真技术大赛 (sunmooc.cn) 本次大赛共分为四个赛道:自主命题赛道、教育知识图谱设计赛道、FPGA硬件扑克牌对抗赛道、EasyAR元宇宙空间设计赛道。 参赛对象 : 具有正式学籍的在校研究生,本科…...

SQL每日一题:删除重复电子邮箱
题干 表: Person -------------------- | Column Name | Type | -------------------- | id | int | | email | varchar | -------------------- id 是该表的主键列(具有唯一值的列)。 该表的每一行包含一封电子邮件。电子邮件将不包含大写字母。 编写解决方案 删除 所有重复…...
vscode里如何用git
打开vs终端执行如下: 1 初始化 Git 仓库(如果尚未初始化) git init 2 添加文件到 Git 仓库 git add . 3 使用 git commit 命令来提交你的更改。确保在提交时加上一个有用的消息。 git commit -m "备注信息" 4 …...
条件运算符
C中的三目运算符(也称条件运算符,英文:ternary operator)是一种简洁的条件选择语句,语法如下: 条件表达式 ? 表达式1 : 表达式2• 如果“条件表达式”为true,则整个表达式的结果为“表达式1”…...

用机器学习破解新能源领域的“弃风”难题
音乐发烧友深有体会,玩音乐的本质就是玩电网。火电声音偏暖,水电偏冷,风电偏空旷。至于太阳能发的电,则略显朦胧和单薄。 不知你是否有感觉,近两年家里的音响声音越来越冷,听起来越来越单薄? —…...
A2A JS SDK 完整教程:快速入门指南
目录 什么是 A2A JS SDK?A2A JS 安装与设置A2A JS 核心概念创建你的第一个 A2A JS 代理A2A JS 服务端开发A2A JS 客户端使用A2A JS 高级特性A2A JS 最佳实践A2A JS 故障排除 什么是 A2A JS SDK? A2A JS SDK 是一个专为 JavaScript/TypeScript 开发者设计的强大库ÿ…...

Python Ovito统计金刚石结构数量
大家好,我是小马老师。 本文介绍python ovito方法统计金刚石结构的方法。 Ovito Identify diamond structure命令可以识别和统计金刚石结构,但是无法直接输出结构的变化情况。 本文使用python调用ovito包的方法,可以持续统计各步的金刚石结构,具体代码如下: from ovito…...

毫米波雷达基础理论(3D+4D)
3D、4D毫米波雷达基础知识及厂商选型 PreView : https://mp.weixin.qq.com/s/bQkju4r6med7I3TBGJI_bQ 1. FMCW毫米波雷达基础知识 主要参考博文: 一文入门汽车毫米波雷达基本原理 :https://mp.weixin.qq.com/s/_EN7A5lKcz2Eh8dLnjE19w 毫米波雷达基础…...

MySQL:分区的基本使用
目录 一、什么是分区二、有什么作用三、分类四、创建分区五、删除分区 一、什么是分区 MySQL 分区(Partitioning)是一种将单张表的数据逻辑上拆分成多个物理部分的技术。这些物理部分(分区)可以独立存储、管理和优化,…...
用鸿蒙HarmonyOS5实现中国象棋小游戏的过程
下面是一个基于鸿蒙OS (HarmonyOS) 的中国象棋小游戏的实现代码。这个实现使用Java语言和鸿蒙的Ability框架。 1. 项目结构 /src/main/java/com/example/chinesechess/├── MainAbilitySlice.java // 主界面逻辑├── ChessView.java // 游戏视图和逻辑├──…...
TJCTF 2025
还以为是天津的。这个比较容易,虽然绕了点弯,可还是把CP AK了,不过我会的别人也会,还是没啥名次。记录一下吧。 Crypto bacon-bits with open(flag.txt) as f: flag f.read().strip() with open(text.txt) as t: text t.read…...

2025年- H71-Lc179--39.组合总和(回溯,组合)--Java版
1.题目描述 2.思路 当前的元素可以重复使用。 (1)确定回溯算法函数的参数和返回值(一般是void类型) (2)因为是用递归实现的,所以我们要确定终止条件 (3)单层搜索逻辑 二…...