【源码阅读】Sony的go breaker熔断器源码探究
文章目录
- 背景
- 源码分析
- 总结
背景
在微服务时代,服务和服务之间调用、跨部门调用都是很常见的事,但这些调用都存在很多不确定因素,如核心服务A依赖的部门B服务挂掉了,那么A本身的功能将会受到直接的影响,而这些都会影响着我们本身为用户提供的产品功能表现,因此,做好服务调用的熔断降级措施是非常有必要的。在golang开发中,我们经常都会使用到一个组件gobreaker,用非常少量的代码实现了服务熔断功能,下面我们将对gobreaker的源代码进行分析。
源码分析
源码地址:https://github.com/sony/gobreaker
熔断器设计:gobreaker熔断器是否生效主要是根据状态来的,熔断器会在Closed、HalfOpen、Open三种状态中转换。
- 初始状态是Closed,这个状态下熔断器会放行所有请求。
- 当满足熔断条件(如达到一定数量的错误计数)时,熔断器进入Open 状态,不能再放行请求,对于所有的请求都直接返回熔断器本身定义的熔断错误。
- 熔断器在Open状态经过一段Interval时间后,自动进入Half-Open状态,在此期间,会根据HalfOpen的策略放行请求,并记录请求的执行结果状态。如果放行的这些请求最终计数满足闭合状态,熔断器将进入Closed状态,继续放行请求,反之则会自动进入Open状态。
Closed / \Half-Open <--> Open
1、熔断器配置
type Settings struct {Name string // 熔断器名称MaxRequests uint32 // 最大请求数,熔断器半开状态放行的最大请求数Interval time.Duration // 计数周期,类似于滑动窗口的窗口大小,用于定期清理countsTimeout time.Duration // 熔断器进入Open状态后,经过timeout时间进入HalfOpen状态ReadyToTrip func(counts Counts) bool // 熔断器的计数策略,计数是记在counts中的,如连续出错达到一定数量后,该方法将会返回true,此时熔断器将进入Open状态OnStateChange func(name string, from State, to State) // 熔断器状态发生变化时候的回调方法,参数表示熔断器从一个状态转变到另一个状态IsSuccessful func(err error) bool // 熔断器的计数方法,调用发生错误时,通过该方法进行计数,累积到ReadyToTrip中的策略触发后,熔断器将进入Open状态
}
官方解释:
2、熔断器计数
type Counts struct {Requests uint32 // 总的请求数量TotalSuccesses uint32 // 总的成功数TotalFailures uint32 // 总的失败数ConsecutiveSuccesses uint32 // 连续成功数ConsecutiveFailures uint32 // 连续失败数
}
此外,需要注意的是,熔断器的计数是发生在范围: Generation周期内的。
3、熔断器
// CircuitBreaker is a state machine to prevent sending requests that are likely to fail.
type CircuitBreaker struct {name string // 熔断器名称maxRequests uint32 // 熔断器半开状态的最大请求数interval time.Duration // 熔断器处于闭合状态时的计数周期,每个周期开始时会清理countstimeout time.Duration // 熔断器从open状态到halfopen状态的时间readyToTrip func(counts Counts) bool // 熔断器计数策略isSuccessful func(err error) bool // 熔断器计数方法onStateChange func(name string, from State, to State) // 熔断器状态改变回调方法mutex sync.Mutexstate State // 熔断器当前状态:Open、Closed、HalfOpengeneration uint64 // 每一个时间周期(Interval)的计数(count)状态称为一个generation。counts Counts // 当前generation的计数统计,切换generation时候会清空countsexpiry time.Time // 过期时间
}
熔断器的核心方法Execute :
// Execute runs the given request if the CircuitBreaker accepts it.
// Execute returns an error instantly if the CircuitBreaker rejects the request.
// Otherwise, Execute returns the result of the request.
// If a panic occurs in the request, the CircuitBreaker handles it as an error
// and causes the same panic again.
func (cb *CircuitBreaker) Execute(req func() (interface{}, error)) (interface{}, error) {generation, err := cb.beforeRequest()if err != nil {return nil, err}defer func() {e := recover()if e != nil {cb.afterRequest(generation, false)panic(e)}}()result, err := req()cb.afterRequest(generation, cb.isSuccessful(err))return result, err
}
该方法主要是几个步骤,beforeRequest()、 执行请求req()和afterRequest(),其中,req是我们真正需要执行的业务方法,比如为A对B的一次http、rpc调用等。
- beforeRequest()
func (cb *CircuitBreaker) beforeRequest() (uint64, error) {cb.mutex.Lock()defer cb.mutex.Unlock()now := time.Now()state, generation := cb.currentState(now) // 获取当前熔断器的状态state和计数周期generationif state == StateOpen { // 如果熔断器处于Open状态,那么将会直接返回熔断错误,并将generation返回return generation, ErrOpenState//如果熔断器处于半开状态,且请求数目已经超过了最大请求数,那么也将会返回错误} else if state == StateHalfOpen && cb.counts.Requests >= cb.maxRequests {return generation, ErrTooManyRequests}// 熔断器处于闭合状态,正常放行请求,计数cb.counts.onRequest() // counts计数return generation, nil
}
- afterRequest()
func (cb *CircuitBreaker) afterRequest(before uint64, success bool) {cb.mutex.Lock()defer cb.mutex.Unlock()now := time.Now()state, generation := cb.currentState(now) // 获取当前熔断器的状态和计数周期if generation != before { // 如果此时的计数周期和before阶段返回的不一致,那么将直接返回return}// 否则,根据调用设置的响应,对counts的成功或者失败请求进行计数if success {cb.onSuccess(state, now)} else {cb.onFailure(state, now)}
}
// 根据熔断器状态计数成功的请求:
// 1、熔断器处于闭合状态,则直接计数success
// 2、熔断器处于半开状态,则计数成功,且如果连续成功的数量超过了最大请求数,那么熔断器将进入闭合状态,计数进入下一个周期
func (cb *CircuitBreaker) onSuccess(state State, now time.Time) {switch state {case StateClosed: cb.counts.onSuccess()case StateHalfOpen:cb.counts.onSuccess()if cb.counts.ConsecutiveSuccesses >= cb.maxRequests {cb.setState(StateClosed, now)}}
}
// 根据熔断器状态计数成功的请求:
// 1、熔断器处于闭合状态,计数失败,且如果当前计数周期的统计结果达到了熔断的条件,那么熔断器将被设置为打开状态。
// 2、如果熔断器处于半开状态,此时又发生了错误,那么熔断器直接进入打开状态
func (cb *CircuitBreaker) onFailure(state State, now time.Time) {switch state {case StateClosed:cb.counts.onFailure()if cb.readyToTrip(cb.counts) {cb.setState(StateOpen, now)}case StateHalfOpen:cb.setState(StateOpen, now)}
}
- currentState()
该方法作用主要是根据熔断器的状态以及计数过期时间expiry等,来判断是否需要进入到下一个generation(计数周期)中,currentState作用当然就是返回当前的generation和熔断器状态了。
func (cb *CircuitBreaker) currentState(now time.Time) (State, uint64) {switch cb.state {case StateClosed: // 当熔断器处于闭合状态时,如果过期时间到,则进入到下一个计数周期中,产生一个新的generationif !cb.expiry.IsZero() && cb.expiry.Before(now) {cb.toNewGeneration(now) // 产生新的generation}case StateOpen: // 如果熔断器处于打开状态,且过期时间expiry到,那么熔断器将进入半开状态if cb.expiry.Before(now) {cb.setState(StateHalfOpen, now) }}return cb.state, cb.generation
}func (cb *CircuitBreaker) setState(state State, now time.Time) {if cb.state == state {return}prev := cb.statecb.state = statecb.toNewGeneration(now)if cb.onStateChange != nil {cb.onStateChange(cb.name, prev, state)}
}
// 生成新的generation。 主要是清空counts和设置expiry(过期时间)。
// 当状态为Closed时expiry为Closed的过期时间(当前时间 + interval),
// 当状态为Open时expiry为Open的过期时间(当前时间 + timeout)
func (cb *CircuitBreaker) toNewGeneration(now time.Time) {cb.generation++ // 计数周期++cb.counts.clear() // 清空counts统计// 根据熔断器状态state、闭合状态的计数周期interval和// 熔断器从Open恢复到HalfOpen的超时时间timeout来重置过期时间var zero time.Timeswitch cb.state {case StateClosed:if cb.interval == 0 {cb.expiry = zero} else {cb.expiry = now.Add(cb.interval)}case StateOpen:cb.expiry = now.Add(cb.timeout)default: // StateHalfOpen状态,关闭超时时间cb.expiry = zero }
}
总结
Sony的gobreaker通过短短几百行代码就实现了一个功能强大的熔断器,其中的原理解释来源微软Circuit Breaker Pattern,整体上,gobreaker的设计思想主要体现在几个函数中:
- beforeRequest()
该函数主要作用是根据熔断器的计数状态,判断是否放行请求,计数或达到切换新条件刚切换。
1、判断熔断器是否Closed,如是,放行所有请求。并且会在调用toNewGeneration()判断时间是否达到Interval周期,从而清空计数,进入新的计数周期。
2、如果是Open状态,返回ErrOpenState,不放行所有请求。同样判断周期时间,到达则 同样调用 toNewGeneration()
3、如果是HalfOpen状态,则判断是否已放行MaxRequests个请求,如未达到则放行请求;否则返回:ErrTooManyRequests。
beforeRequest方法中,一旦放行请求,就会对当前的周期的请求计数加1。
- afterRequest()
该函数核心内容很简单,主要就是对before阶段放行的请求进行统计,放行请求执行成功/失败都会调用该方法进行计数,达到条件则切换状态。
1、与beforeRequest一样,会调用公共函数 currentState方法;在currentState中会根据熔断器状态和来判断如何产生一个新的计数周期;如果熔断器处于闭合状态,则会根据expiry过期时间来判断熔断器是否进入先前的一个计数周期,如果是则调用toNewGeneration来产生一个新的计数周期,并且清空计数统计。如果熔断器处于断开状态,并且达到超时时间,那么将会改变熔断器的状态为半开状态,并且调用toNewGeneration进入下一个计数周期。
2、注意:在after中进入新的计数周期并是好事,因为这往往意味着执行业务请求req花费了更多的时间,导致before阶段和after阶段不在一个计数周期内,因此,这种情况熔断器将不会计数。也就是说,如果req耗时大于Interval,熔断器每次after时都会进入新的计数周期,上一个周期的统计就清空了,熔断器也就没有太大价值了。
gobreaker的核心代码中使用了一个generation的概念,每一个时间周期(Interval)的计数(count)状态称为一个generation。这个概念保证了熔断器after阶段的计数和before的计数是在同一个计数周期内。
相关文章:

【源码阅读】Sony的go breaker熔断器源码探究
文章目录 背景源码分析总结 背景 在微服务时代,服务和服务之间调用、跨部门调用都是很常见的事,但这些调用都存在很多不确定因素,如核心服务A依赖的部门B服务挂掉了,那么A本身的功能将会受到直接的影响,而这些都会影响…...
LeetCode题(66,69,35,88)--《c++》
66.加一 // // Created by wxj05 on 2024/7/20. // //法一 class Solution { public:vector<int> plusOne(vector<int>& digits) {bool carry true; // 进位标志for (int i digits.size() - 1; i > 0 && carry; --i) {digits[i] 1;carry digit…...

来参与“向日葵杯”全国教育仿真技术大赛~
可点击进行了解:“向日葵杯”全国教育仿真技术大赛 (sunmooc.cn) 本次大赛共分为四个赛道:自主命题赛道、教育知识图谱设计赛道、FPGA硬件扑克牌对抗赛道、EasyAR元宇宙空间设计赛道。 参赛对象 : 具有正式学籍的在校研究生,本科…...

SQL每日一题:删除重复电子邮箱
题干 表: Person -------------------- | Column Name | Type | -------------------- | id | int | | email | varchar | -------------------- id 是该表的主键列(具有唯一值的列)。 该表的每一行包含一封电子邮件。电子邮件将不包含大写字母。 编写解决方案 删除 所有重复…...

3、宠物商店智能合约实战(truffle智能合约项目实战)
3、宠物商店智能合约实战(truffle智能合约项目实战) 1-宠物商店环境搭建、运行2-webjs与宠物逻辑实现3-领养智能合约初始化4-宠物领养实现5-更新宠物领养状态 1-宠物商店环境搭建、运行 https://www.trufflesuite.com/boxes/pet-shop 这个还是不行 或者…...
数据库系列
目录 一、数据库的概念和作用 1.数据库的特点 2.数据模型 二、数据库系统 1.数据库管理系统 2.数据库的基本操作 一、数据库的概念和作用 数据库是指长期存储在计算机内,有组织的、可共享的数据集合。它可视为一个电子化的文件柜,用来存储电子文件…...
极狐GitLab如何启用和配置PlantUML?
GitLab 是一个全球知名的一体化 DevOps 平台,很多人都通过私有化部署 GitLab 来进行源代码托管。极狐GitLab :https://gitlab.cn/install?channelcontent&utm_sourcecsdn 是 GitLab 在中国的发行版,专门为中国程序员服务。可以一键式部署…...
Shell 构建flutter + Android 生成Apk
具体步骤 #shell 具体实现和说明如下: echo "build_start_apk!" echo "编译此脚本的前提条件如下:" #在Android 项目的主工程下,进入主工程文件夹,创建build-android 文件夹,在其文件夹下有build-android.sh文件,此文件就是整个文章的脚本内容(…...

如何用手机压缩视频?手机压缩视频方法来了
高清视频的大文件大小常常成为分享和存储的障碍,尤其是在数据流量有限或存储空间紧张的情况下。幸运的是,无论是智能手机还是个人电脑,都有多种方法可以帮助我们轻松压缩视频文件,以适应不同的需求和情境。本文将介绍如何在手机上…...
Linux下如何安装配置Elastic Stack日志收集系统
安装和配置Elastic Stack日志收集系统,包括Elasticsearch、Logstash和Kibana,是一个相对复杂的过程。本篇文章将逐步引导您完成整个过程。 安装Java Elasticsearch、Logstash和Kibana都需要Java运行环境。首先,您需要在Linux系统上安装Java…...

【深入C++】map和set的使用
文章目录 C 中的容器分类1. 顺序容器2. 关联容器3. 无序容器4. 容器适配器5. 字符串容器6. 特殊容器 set1.构造函数2.迭代器3.容量相关的成员函数4.修改器类的成员函数5.容器相关操作的成员函数 multiset1.equal_range map1.初始化相关的函数2.迭代器3.容量相关的成员函数4.访问…...

跟代码执行流程,读Megatron源码(二)训练入口pretrain_gpt.py
Megatron-LM默认支持GPT、T5、BERT等多个常见模型的预训练,当下大模型流行,故以pretrain_gpt.py为例做源码的走读。 一. 启动pretrain_gpt.py pretrain_gpt.py为GPT类模型的训练入口,它通过命令行形式被调用,其精确执行路径位于M…...
MATLAB练习题——矩阵(2)
逻辑运算 a [5 0.2 0 -8 -0.7 ],在进行逻辑运算时,a 相当于什么样的逻辑量。 相当于 a[1 1 0 1 1] 角度运算 在 sin(x)运算中,x 是角度还是弧度? 在 sin(x)运算中,x 是弧度,MATLAB 规定所有…...
arm、AArch64、x86、amd64、x86_64 的区别
arm vs AArch64 vs amd64 vs x86_64 vs x86 的区别 当涉及到 CPU 的时候,有许多术语:AArch64、x86_64、amd64、arm 等等。了解它们是什么以及它们之间的区别。 当你查看数据表或软件下载页面时是否被 ARM、AArch64、x86_64、i386 等术语混淆?…...

【SpringBoot】 jasypt配置文件密码加解密
目前我们对yml配置文件中的密码都是明文显示,显然这不安全,有的程序员离职了以后可能会做一些非法骚操作,所以我们最好要做一个加密,只能让领导架构师或者技术经理知道这个密码。所以这节课就需要来实现一下。 我们可以使用jasypt…...

复杂网络的任意子节点的网络最短距离
复杂网络的任意子节点的网络最短距离 题目要求介绍 本文算法测试用的数据集为空手道俱乐部,其中空手道俱乐部的数据集可通过这个链接进行下载•http://vlado.fmf.uni-lj.si/pub/networks/data/Ucinet/UciData.htm#zachary 摘要 本文旨在解决复杂网络中任意子节点…...

(Qt) 文件读写基础
文章目录 🗂️前言📄ref📄访问标记🗃️enum 标记 🗂️Code📄demo📄分点讲解🗃️继承体系🗃️打开/关闭🗃️写🗃️读 🗂️END…...

全产业布局对穿戴甲品牌连锁店的意义
对于美甲行业来说,穿戴甲虽然不是什么新生事物,但也就是近两年才流行开来。面对井喷的市场需求,相应的从业者,不管是品牌连锁店,还是做批发、外贸,美甲周边、亦或是OEM的,大家都忙得不亦乐乎&am…...

git的一些使用技巧(git fetch 和 git pull的区别,git merge 和 git rebase的区别)
最近闲来无聊,虽然会使用git操作,但是 git fetch 和 git pull 的区别,git merge 和 git rebase的区别只是一知半解,稍微研究一下; git fetch 和 git pull 的区别 git fetch git fetch 是将远程仓库中的改动拉到本地…...

展厅中控系统有哪些优势呢
格芬科技的展厅中控系统具有多方面的优势,主要体现在以下几个方面: 一、高度集成与灵活控制 全终端网络可编程:格芬科技的展厅中控系统采用全终端网络可编程技术,能够实现对展厅内各种设备的集中控制和管理,包括电脑…...

RocketMQ延迟消息机制
两种延迟消息 RocketMQ中提供了两种延迟消息机制 指定固定的延迟级别 通过在Message中设定一个MessageDelayLevel参数,对应18个预设的延迟级别指定时间点的延迟级别 通过在Message中设定一个DeliverTimeMS指定一个Long类型表示的具体时间点。到了时间点后…...

渗透实战PortSwigger靶场-XSS Lab 14:大多数标签和属性被阻止
<script>标签被拦截 我们需要把全部可用的 tag 和 event 进行暴力破解 XSS cheat sheet: https://portswigger.net/web-security/cross-site-scripting/cheat-sheet 通过爆破发现body可以用 再把全部 events 放进去爆破 这些 event 全部可用 <body onres…...
2024年赣州旅游投资集团社会招聘笔试真
2024年赣州旅游投资集团社会招聘笔试真 题 ( 满 分 1 0 0 分 时 间 1 2 0 分 钟 ) 一、单选题(每题只有一个正确答案,答错、不答或多答均不得分) 1.纪要的特点不包括()。 A.概括重点 B.指导传达 C. 客观纪实 D.有言必录 【答案】: D 2.1864年,()预言了电磁波的存在,并指出…...
论文解读:交大港大上海AI Lab开源论文 | 宇树机器人多姿态起立控制强化学习框架(一)
宇树机器人多姿态起立控制强化学习框架论文解析 论文解读:交大&港大&上海AI Lab开源论文 | 宇树机器人多姿态起立控制强化学习框架(一) 论文解读:交大&港大&上海AI Lab开源论文 | 宇树机器人多姿态起立控制强化…...

uniapp微信小程序视频实时流+pc端预览方案
方案类型技术实现是否免费优点缺点适用场景延迟范围开发复杂度WebSocket图片帧定时拍照Base64传输✅ 完全免费无需服务器 纯前端实现高延迟高流量 帧率极低个人demo测试 超低频监控500ms-2s⭐⭐RTMP推流TRTC/即构SDK推流❌ 付费方案 (部分有免费额度&#x…...

JUC笔记(上)-复习 涉及死锁 volatile synchronized CAS 原子操作
一、上下文切换 即使单核CPU也可以进行多线程执行代码,CPU会给每个线程分配CPU时间片来实现这个机制。时间片非常短,所以CPU会不断地切换线程执行,从而让我们感觉多个线程是同时执行的。时间片一般是十几毫秒(ms)。通过时间片分配算法执行。…...

ArcGIS Pro制作水平横向图例+多级标注
今天介绍下载ArcGIS Pro中如何设置水平横向图例。 之前我们介绍了ArcGIS的横向图例制作:ArcGIS横向、多列图例、顺序重排、符号居中、批量更改图例符号等等(ArcGIS出图图例8大技巧),那这次我们看看ArcGIS Pro如何更加快捷的操作。…...

【开发技术】.Net使用FFmpeg视频特定帧上绘制内容
目录 一、目的 二、解决方案 2.1 什么是FFmpeg 2.2 FFmpeg主要功能 2.3 使用Xabe.FFmpeg调用FFmpeg功能 2.4 使用 FFmpeg 的 drawbox 滤镜来绘制 ROI 三、总结 一、目的 当前市场上有很多目标检测智能识别的相关算法,当前调用一个医疗行业的AI识别算法后返回…...
大数据学习(132)-HIve数据分析
🍋🍋大数据学习🍋🍋 🔥系列专栏: 👑哲学语录: 用力所能及,改变世界。 💖如果觉得博主的文章还不错的话,请点赞👍收藏⭐️留言Ǵ…...

GC1808高性能24位立体声音频ADC芯片解析
1. 芯片概述 GC1808是一款24位立体声音频模数转换器(ADC),支持8kHz~96kHz采样率,集成Δ-Σ调制器、数字抗混叠滤波器和高通滤波器,适用于高保真音频采集场景。 2. 核心特性 高精度:24位分辨率,…...