当前位置: 首页 > news >正文

十大排序的稳定性和时间复杂度

十大排序算法的稳定性和时间复杂度是数据结构和算法中的重要内容。

以下是对这些算法的稳定性和时间复杂度的详细分析:

稳定性

稳定性指的是排序算法在排序过程中是否能够保持相等元素的原始相对顺序。根据这个定义,我们可以将排序算法分为稳定排序和不稳定排序两大类。

稳定排序算法:

  1. 冒泡排序:通过相邻元素的比较和交换进行排序,相同元素在排序过程中不会改变相对位置。
  2. 插入排序:通过构建有序序列,对于未排序数据,在已排序序列中从后向前扫描,找到相应位置并插入。相同元素会保持原有的顺序。
  3. 归并排序:采用分治策略,将序列分成多个子序列,分别排序后再合并。合并过程中会保证相同元素的顺序。
  4. 计数排序:非比较排序算法,通过统计每个元素的出现次数来确定其在排序后数组中的位置。相同元素会按照它们在原数组中的顺序排列。
  5. 桶排序(在特定条件下):如果每个桶内部使用稳定的排序算法,则整个桶排序也是稳定的。
  6. 基数排序:按照低位先排序,然后收集;再按照高位排序,然后再收集。相同元素在排序过程中会保持原有的顺序。

不稳定排序算法:

  1. 选择排序:通过选择剩余未排序部分的最小(或最大)元素,与未排序部分的第一个元素交换位置。这个过程中,相同元素的相对位置可能会发生改变。
  2. 希尔排序:是插入排序的一种更高效的改进版本,通过不同步长的插入排序来加快排序速度。但由于不同步长的插入排序可能会导致相同元素的相对位置发生变化,因此希尔排序是不稳定的。
  3. 快速排序:通过选择一个基准元素,将数组分为小于和大于基准元素的两个部分,然后递归地对这两部分进行排序。这个过程中,相同元素的相对位置可能会发生改变。
  4. 堆排序:通过构建二叉堆来进行排序。在堆的调整过程中,相同元素的相对位置可能会发生改变。
  5. 时间复杂度

时间复杂度和稳定性

时间复杂度是衡量算法执行时间随输入规模增长而增长的速率的一个指标。以下是十大排序算法的平均、最好和最坏情况下的时间复杂度:

排序算法    平均时间复杂度    最好时间复杂度    最坏时间复杂度
冒泡排序    O(n^2)                        O(n)                     O(n^2)
选择排序    O(n^2)                        O(n^2)                 O(n^2)
插入排序    O(n^2)                        O(n)                     O(n^2)
希尔排序    O(n log n)                  O(nlogn)               O(n^2)
归并排序    O(n log n)                  O(n log n)             O(n log n)
快速排序    O(n log n)                  O(n log n)             O(n^2)
堆排序       O(n log n)                  O(n log n)             O(n log n)
计数排序    O(n + k)                    O(n + k)                  O(n + k)
桶排序        O(n + k)                   O(n)                         O(n^2)
基数排序    O(d(n + k))                 O(d(n + k))            O(d(n + k))


其中,n 是数组的长度,k 是整数的范围(对于计数排序和桶排序),d 是数字的位数(对于基数排序)。。

相关文章:

十大排序的稳定性和时间复杂度

十大排序算法的稳定性和时间复杂度是数据结构和算法中的重要内容。 以下是对这些算法的稳定性和时间复杂度的详细分析: 稳定性 稳定性指的是排序算法在排序过程中是否能够保持相等元素的原始相对顺序。根据这个定义,我们可以将排序算法分为稳定排序和…...

【系列教程之】1、点亮一个LED灯

1、点亮一个LED灯 作者将狼才鲸创建日期2024-07-23 CSDN教程目录地址:【目录】8051汇编与C语言系列教程本Gitee仓库原始地址:才鲸嵌入式/8051_c51_单片机从汇编到C_从Boot到应用实践教程 本源码包含C语言和汇编工程,能直接在电脑中通过Keil…...

搜维尔科技:Manus Metagloves使用精确的量子跟踪技术捕捉手部每一个细节动作

Manus Metagloves使用精确的量子跟踪技术捕捉手部每一个细节动作 搜维尔科技:Manus Metagloves使用精确的量子跟踪技术捕捉手部每一个细节动作...

机器学习 | 阿里云安全恶意程序检测

目录 一、数据探索1.1 数据说明1.2 训练集数据探索1.2.1 数据特征类型1.2.2 数据分布1.2.3 缺失值1.2.4 异常值1.2.5 标签分布探索 1.3 测试集探索1.3.1 数据信息1.3.2 缺失值1.3.3 数据分布1.3.4 异常值 1.4 数据集联合分析1.4.1 file_id 分析1.4.2 API 分析 二、特征工程与基…...

python打包exe文件-实现记录

1、使用pyinstaller库 安装库: pip install pyinstaller打包命令标注主入库程序: pyinstaller -F.\程序入口文件.py 出现了一个问题就是我在打包运行之后会出现有一些插件没有被打包。 解决问题: 通过添加--hidden-importcomtypes.strea…...

基本的DQL语句-单表查询

一、DQL语言 DQL(Data Query Language 数据查询语言)。用途是查询数据库数据,如SELECT语句。是SQL语句 中最核心、最重要的语句,也是使用频率最高的语句。其中,可以根据表的结构和关系分为单表查询和多 表联查。 注意:所有的查询…...

Vue3 对比 Vue2

相关信息简介2020年9月18日,Vue.js发布3.0版本,代号:One Piece(海贼王) 2 年多开发, 100位贡献者, 2600次提交, 600次 PR、30个RFC Vue3 支持 vue2 的大多数特性 可以更好的支持 Typescript,提供了完整的…...

2024中国大学生算法设计超级联赛(1)

🚀欢迎来到本文🚀 🍉个人简介:陈童学哦,彩笔ACMer一枚。 🏀所属专栏:杭电多校集训 本文用于记录回顾总结解题思路便于加深理解。 📢📢📢传送门 A - 循环位移解…...

offer题目51:数组中的逆序对

题目描述:在数组中的两个数字,如果前面一个数字大于后面的数字,则这两个数字组成一个逆序对。输入一个数组,求出这个数组中的逆序对的总数。例如,在数组{7,5,6,4}中,一共存在5个逆序对,分别是(7…...

45、PHP 实现滑动窗口的最大值

题目: PHP 实现滑动窗口的最大值 描述: 给定一个数组和滑动窗口的大小,找出所有滑动窗口里数值的最大值。 例如: 如果输入数组{2,3,4,2,6,2,5,1}及滑动窗口的大小3, 那么一共存在6个滑动窗口, 他们的最大值…...

【计算机视觉】siamfc论文复现实现目标追踪

什么是目标跟踪 使用视频序列第一帧的图像(包括bounding box的位置),来找出目标出现在后序帧位置的一种方法。 什么是孪生网络结构 孪生网络结构其思想是将一个训练样本(已知类别)和一个测试样本(未知类别)输入到两个CNN(这两个CNN往往是权值共享的)中&#xff0…...

数学建模学习(111):改进遗传算法(引入模拟退火、轮盘赌和网格搜索)求解JSP问题

文章目录 一、车间调度问题1.1目前处理方法1.2简单案例 二、基于改进遗传算法求解车间调度2.1车间调度背景介绍2.2遗传算法介绍2.2.1基本流程2.2.2遗传算法的基本操作和公式2.2.3遗传算法的优势2.2.4遗传算法的不足 2.3讲解本文思路及代码2.4算法执行结果: 三、本文…...

Golang | Leetcode Golang题解之第241题为运算表达式设计优先级

题目&#xff1a; 题解&#xff1a; const addition, subtraction, multiplication -1, -2, -3func diffWaysToCompute(expression string) []int {ops : []int{}for i, n : 0, len(expression); i < n; {if unicode.IsDigit(rune(expression[i])) {x : 0for ; i < n &…...

Unity客户端接入原生Google支付

Unity客户端接入原生Google支付 1. Google后台配置2. 开始接入Java部分C#部分Lua部分 3. 导出工程打包测试参考踩坑注意 1. Google后台配置 找到内部测试&#xff08;这个测试轨道过审最快&#xff09;&#xff0c;打包上传&#xff0c;这个包不需要接入支付&#xff0c;如果已…...

Spring Cloud之五大组件

Spring Cloud 是一系列框架的有序集合&#xff0c;为开发者提供了快速构建分布式系统的工具。这些组件可以帮助开发者做服务发现&#xff0c;配置管理&#xff0c;负载均衡&#xff0c;断路器&#xff0c;智能路由&#xff0c;微代理&#xff0c;控制总线等。以下是 Spring Cl…...

在 CentOS 7 上安装 Docker 并安装和部署 .NET Core 3.1

1. 安装 Docker 步骤 1.1&#xff1a;更新包索引并安装依赖包 先安装yum的扩展&#xff0c;yum-utils提供了一些额外的工具&#xff0c;这些工具可以执行比基本yum命令更复杂的任务 sudo yum install -y yum-utils sudo yum update -y #更新系统上已安装的所有软件包到最新…...

redis的学习(一):下载安装启动连接

简介 redis的下载&#xff0c;安装&#xff0c;启动&#xff0c;连接使用 nosql nosql&#xff0c;即非关系型数据库&#xff0c;和传统的关系型数据库的对比&#xff1a; sqlnosql数据结构结构化非结构化数据关联关联的非关联的查询方式sql查询非sql查询事务特性acidbase存…...

前端设计模式面试题汇总

面试题 1. 简述对网站重构的理解&#xff1f; 参考回答&#xff1a; 网站重构&#xff1a;在不改变外部行为的前提下&#xff0c;简化结构、添加可读性&#xff0c;而在网站前端保持一致的行为。也就是说是在不改变UI的情况下&#xff0c;对网站进行优化&#xff0c; 在扩展的…...

linux(CentOS、Ubuntu)安装python3.12.2环境

1.下载官网Python安装包 wget https://www.python.org/ftp/python/3.12.2/Python-3.12.2.tar.xz 1.1解压 tar -xf Python-3.12.2.tar.xz 解压完后切换到Python-3.12.2文件夹(这里根据自己解压的文件夹路径) cd /usr/packages/Python-3.12.2/ 1.2升级软件包管理器 CentOS系…...

CSS 中border-radius 属性

border-radius 属性在 CSS 中用于创建圆角边框。它可以接受一到四个值&#xff0c;这些值可以是长度值&#xff08;如像素 px、em 等&#xff09;或百分比&#xff08;%&#xff09;。当提供四个值时&#xff0c;它们分别对应于边框的左上角、右上角、右下角和左下角的圆角半径…...

多云管理“拦路虎”:深入解析网络互联、身份同步与成本可视化的技术复杂度​

一、引言&#xff1a;多云环境的技术复杂性本质​​ 企业采用多云策略已从技术选型升维至生存刚需。当业务系统分散部署在多个云平台时&#xff0c;​​基础设施的技术债呈现指数级积累​​。网络连接、身份认证、成本管理这三大核心挑战相互嵌套&#xff1a;跨云网络构建数据…...

Objective-C常用命名规范总结

【OC】常用命名规范总结 文章目录 【OC】常用命名规范总结1.类名&#xff08;Class Name)2.协议名&#xff08;Protocol Name)3.方法名&#xff08;Method Name)4.属性名&#xff08;Property Name&#xff09;5.局部变量/实例变量&#xff08;Local / Instance Variables&…...

系统设计 --- MongoDB亿级数据查询优化策略

系统设计 --- MongoDB亿级数据查询分表策略 背景Solution --- 分表 背景 使用audit log实现Audi Trail功能 Audit Trail范围: 六个月数据量: 每秒5-7条audi log&#xff0c;共计7千万 – 1亿条数据需要实现全文检索按照时间倒序因为license问题&#xff0c;不能使用ELK只能使用…...

基于数字孪生的水厂可视化平台建设:架构与实践

分享大纲&#xff1a; 1、数字孪生水厂可视化平台建设背景 2、数字孪生水厂可视化平台建设架构 3、数字孪生水厂可视化平台建设成效 近几年&#xff0c;数字孪生水厂的建设开展的如火如荼。作为提升水厂管理效率、优化资源的调度手段&#xff0c;基于数字孪生的水厂可视化平台的…...

屋顶变身“发电站” ,中天合创屋面分布式光伏发电项目顺利并网!

5月28日&#xff0c;中天合创屋面分布式光伏发电项目顺利并网发电&#xff0c;该项目位于内蒙古自治区鄂尔多斯市乌审旗&#xff0c;项目利用中天合创聚乙烯、聚丙烯仓库屋面作为场地建设光伏电站&#xff0c;总装机容量为9.96MWp。 项目投运后&#xff0c;每年可节约标煤3670…...

【HarmonyOS 5 开发速记】如何获取用户信息(头像/昵称/手机号)

1.获取 authorizationCode&#xff1a; 2.利用 authorizationCode 获取 accessToken&#xff1a;文档中心 3.获取手机&#xff1a;文档中心 4.获取昵称头像&#xff1a;文档中心 首先创建 request 若要获取手机号&#xff0c;scope必填 phone&#xff0c;permissions 必填 …...

有限自动机到正规文法转换器v1.0

1 项目简介 这是一个功能强大的有限自动机&#xff08;Finite Automaton, FA&#xff09;到正规文法&#xff08;Regular Grammar&#xff09;转换器&#xff0c;它配备了一个直观且完整的图形用户界面&#xff0c;使用户能够轻松地进行操作和观察。该程序基于编译原理中的经典…...

云原生玩法三问:构建自定义开发环境

云原生玩法三问&#xff1a;构建自定义开发环境 引言 临时运维一个古董项目&#xff0c;无文档&#xff0c;无环境&#xff0c;无交接人&#xff0c;俗称三无。 运行设备的环境老&#xff0c;本地环境版本高&#xff0c;ssh不过去。正好最近对 腾讯出品的云原生 cnb 感兴趣&…...

Python 包管理器 uv 介绍

Python 包管理器 uv 全面介绍 uv 是由 Astral&#xff08;热门工具 Ruff 的开发者&#xff09;推出的下一代高性能 Python 包管理器和构建工具&#xff0c;用 Rust 编写。它旨在解决传统工具&#xff08;如 pip、virtualenv、pip-tools&#xff09;的性能瓶颈&#xff0c;同时…...

从物理机到云原生:全面解析计算虚拟化技术的演进与应用

前言&#xff1a;我的虚拟化技术探索之旅 我最早接触"虚拟机"的概念是从Java开始的——JVM&#xff08;Java Virtual Machine&#xff09;让"一次编写&#xff0c;到处运行"成为可能。这个软件层面的虚拟化让我着迷&#xff0c;但直到后来接触VMware和Doc…...