tensorflow安装及数据操作----学习笔记(一)
安装Miniconda
下载对应系统版本的Miniconda。我的系统是ubuntu,所以选择Miniconda3 Linux 64-bit。下载后执行下载的sh脚本
sh Miniconda3-latest-Linux-x86_64.sh -b
执行后,运行conda初始化命令
~/miniconda3/bin/conda init
关闭当前命令终端,打开新的终端,创建一个新的环境
conda create --name tensorflow python=3.9 -y
激活tensorflow环境
conda activate tensorflow
安装tensorflow
pip install tensorflow==2.8.0
pip install tensorflow-probability==0.16.0
基本数据操作
导入tensorflow,创建一个行向量x,包含以0开始的前12个整数,默认创建的为整数。
import tensorflow as tfx = tf.range(12)# 可以通过shape属性来访问张量的形状
x.shape# 获取张量中元素总数
tf.size(x)
# tf.Tensor(12, shape=(), dtype=int32)# 改变张量的形状,不改变元素数量和元素值
x = tf.reshape(x, (3, 4))
"""
输出x
tf.Tensor(
[[ 0 1 2 3][ 4 5 6 7][ 8 9 10 11]], shape=(3, 4), dtype=int32)
"""# 创建全0张量,形状为(2,3,4)
tf.zeros((2, 3, 4))
"""
tf.Tensor(
[[[0. 0. 0. 0.][0. 0. 0. 0.][0. 0. 0. 0.]][[0. 0. 0. 0.][0. 0. 0. 0.][0. 0. 0. 0.]]], shape=(2, 3, 4), dtype=float32)
"""# 创建全1张量,形状为(2, 3, 4)
tf.ones((2, 3, 4))
"""
tf.Tensor(
[[[1. 1. 1. 1.][1. 1. 1. 1.][1. 1. 1. 1.]][[1. 1. 1. 1.][1. 1. 1. 1.][1. 1. 1. 1.]]], shape=(2, 3, 4), dtype=float32)
"""# 创建形状为(3,4)的张量,每个元素都从均值为0、标准差为1的标准高斯分布中随机采样
tf.random.normal(shape=[3, 4])
"""
tf.Tensor(
[[-0.09441569 0.38432765 0.14562869 -1.4273915 ][-1.2483802 -0.5629799 0.61917394 0.95960045][-0.23416954 0.78880084 0.5428484 0.5864796 ]], shape=(3, 4), dtype=float32)
"""# 创建包含数值的Python列表,为所需张量中的每个元素赋予确定的值。
tf.constant([[2, 1, 4, 3], [1, 2, 3, 4], [4, 3, 2, 1]])
"""
tf.Tensor(
[[2 1 4 3][1 2 3 4][4 3 2 1]], shape=(3, 4), dtype=int32)
"""
运算符
# 张量的基本运算符(+、-、/、**)
x = tf.constant([1.0, 2, 4, 8])
y = tf.constant([2.0, 2, 2, 2])
x + y, x - y, x * y, x / y, x ** y # **运算符是求幂运算
"""
tf.Tensor([ 3. 4. 6. 10.], shape=(4,), dtype=float32)
tf.Tensor([-1. 0. 2. 6.], shape=(4,), dtype=float32)
tf.Tensor([ 2. 4. 8. 16.], shape=(4,), dtype=float32)
tf.Tensor([0.5 1. 2. 4. ], shape=(4,), dtype=float32)
tf.Tensor([ 1. 4. 16. 64.], shape=(4,), dtype=float32)
"""# “按元素”方式可以应用更多的计算,包括像求幂这样的一元运算符。
tf.exp(x)
"""
tf.Tensor([2.7182817e+00 7.3890562e+00 5.4598148e+01 2.9809580e+03], shape=(4,), dtype=float32)
"""# 多个张量连结在一起
X = tf.reshape(tf.range(12, dtype=tf.float32), (3, 4))
Y = tf.constant([[2.0, 1, 4, 3], [1, 2, 3, 4], [4, 3, 2, 1]])
tf.concat([X, Y], axis=0), tf.concat([X, Y], axis=1)
"""
tf.Tensor(
[[ 0. 1. 2. 3.][ 4. 5. 6. 7.][ 8. 9. 10. 11.][ 2. 1. 4. 3.][ 1. 2. 3. 4.][ 4. 3. 2. 1.]], shape=(6, 4), dtype=float32) tf.Tensor(
[[ 0. 1. 2. 3. 2. 1. 4. 3.][ 4. 5. 6. 7. 1. 2. 3. 4.][ 8. 9. 10. 11. 4. 3. 2. 1.]], shape=(3, 8), dtype=float32)
"""# 通过逻辑运算符构建二元张量
X == Y
"""
tf.Tensor(
[[False True False True][False False False False][False False False False]], shape=(3, 4), dtype=bool)
"""
相关文章:
tensorflow安装及数据操作----学习笔记(一)
安装Miniconda 下载对应系统版本的Miniconda。我的系统是ubuntu,所以选择Miniconda3 Linux 64-bit。下载后执行下载的sh脚本 sh Miniconda3-latest-Linux-x86_64.sh -b执行后,运行conda初始化命令 ~/miniconda3/bin/conda init关闭当前命令终端&#…...
顺序表和单链表的经典算法题
目录 前言 一、基础思想(数组) 1. 移除元素 2.删除有序元素的重复项 3.合并两个有序数组 二、单链表算法 1.移除链表元素 2.翻转链表 3.合并两个有序的链表 前言 Hello,小伙伴们,今天我们来做一个往期知识的回顾,今天我将…...
python基础知识点(蓝桥杯python科目个人复习计划71)
做些简单题 第一题:确定字符串是否包含唯一字符 题目描述: 实现一个算法来识别一个字符串的字符是否是唯一的。 若唯一输出YES,否则输出NO。 输入描述: 输入一个字符串,长度不超过100. 输出描述; 输出一行&…...
【大数据专题】Flink题库
1 . 简述什么是Apache Flink ? Apache Flink 是一个开源的基于流的有状态计算框架。它是分布式地执行的,具备低延迟、高吞吐的优秀性能,并且非常擅长处理有状态的复杂计算逻辑场景 2 . 简述Flink 的核心概念 ? Flink 的核心概念…...
Python鲁汶意外莱顿复杂图拓扑分解算法
🎯要点 🎯算法池化和最佳分区搜索:🖊网格搜索 | 🖊发现算法池 | 🖊返回指定图的最佳划分 | 🖊返回指定图的最佳分区 | 🎯适应度和聚类比较功能:🖊图的划分 |…...
【C++】类和对象之继承
目录 继承的概念和定义 继承的概念 继承的定义 继承的定义格式 继承关系和访问限定符 继承基类成员访问方式的变化 访问权限实例 基类和派生类对象赋值转换 继承中的作用域 派生类的默认成员函数 继承与友元 继承与静态成员 复杂的菱形继承及菱形虚拟继承 继承的…...
如何在LlamaIndex中使用RAG?
如何在LlamaIndex中使用RAG 什么是 Llama-Index LlamaIndex 是一个数据框架,用于帮助基于 LLM 的应用程序摄取、构建结构和访问私有或特定领域的数据。 如何使用 Llama-Index ? 基本用法是一个五步流程,将我们从原始、非结构化数据导向基于该数据生成…...
css气泡背景特效
css气泡背景特效https://www.bootstrapmb.com/item/14879 要创建一个CSS气泡背景特效,你可以使用CSS的伪元素(:before 和 :after)、border-radius 属性来创建圆形或椭圆形的“气泡”,以及background 和 animation 属性来设置背景…...
7.23模拟赛总结 [数据结构优化dp] + [神奇建图]
目录 复盘题解T2T4 复盘 浅复盘下吧… 7:40 开题 看 T1 ,起初以为和以前某道题有点像,子序列划分,注意到状态数很少,搜出来所有状态然后 dp,然后发现这个 T1 和那个毛关系没有 浏览了一下,感觉 T2 题面…...
MySQL-视 图
视 图 创建视图 视图是从一个或者几个基本表(或视图)导出的表。它与基 本表不同,是一个虚表。 语法: create view 视图名 【view_xxx/v_xxx】 说明: • view_name 自己定义的视图名; • as 后面是这…...
PHP SimpleXML
PHP SimpleXML PHP的SimpleXML扩展提供了一个非常方便的方式来处理XML数据。它是PHP内置的,因此不需要安装额外的库。SimpleXML可以将XML数据转换成对象,使得操作XML变得简单直观。本文将详细介绍SimpleXML的使用方法,包括加载XML、访问和修…...
【Spring Boot 自定义配置项详解】
文章目录 一、配置文件1. properties配置1.1 创建配置文件1.2 添加配置项1.3 在应用中使用配置项1.4 多环境配置 2. YAML配置2.1 创建配置文件2.2 添加配置项2.3 在应用中使用配置项2.4 多环境配置 二、自定义配置类1. 创建配置类2. 使用配置类 一、配置文件 Spring Boot支持多…...
电机相位接线错误导致的潜在问题
交流电机有两种基本类型:单相和三相。一般来说,单相交流电机通常用于家用电器等住宅应用,而三相交流电机则用于工业应用。这主要是因为大多数家庭使用单相电源,而大多数工业场所使用三相电源。 鉴于这两种不同的电源方案…...
react中如何mock数据
1.需求说明 因为前后端分离开发项目,就会存在前端静态页面写好了,后端数据接口还没写好;这时候前端就需要自己定义数据来使用。 定义数据有三种方式:直接写死数据、使用mock软件、json-server工具 这里讲解通过json-server工具…...
通过Faiss和DINOv2进行场景识别
目标:通过Faiss和DINOv2进行场景识别,确保输入的照片和注册的图片,保持内容一致。 MetaAI 通过开源 DINOv2,在计算机视觉领域取得了一个显着的里程碑,这是一个在包含1.42 亿张图像的令人印象深刻的数据集上训练的模型…...
新手入门基础Java
一:基础语法 1.Java的运行机制 2. Java基本语法 1.注释、标识符、关键字; 2.数据类型(四类八种) 3.类型转换 1.自动转换;2.强制转换; 4.常量和变量 1.常量;2.变量; 3.变量的作用域 5.运算符 1.算数运算符;2.赋值运算符;3.关系运算符; 4.逻辑运算符;5.自…...
2024最新版虚拟便携空调小程序源码 支持流量主切换空调型号
产品截图 部分源代码展示 urls.js Object.defineProperty(exports, "__esModule", {value: !0 }), exports.default ["9c5f1fa582bee88300ffb7e28dce8b68_3188_128_128.png", "E-116154b04e91de689fb1c4ae99266dff_960.svg", "573eee719…...
前端在浏览器总报错,且获取请求头中token的值为null
前端请求总是失败说受跨域请求影响,但前后端配置已经没有问题了,如下: package com.example.shop_manage_sys.config;import org.springframework.beans.factory.annotation.Autowired; import org.springframework.context.annotation.Conf…...
html+css前端作业 王者荣耀官网6个页面无js
htmlcss前端作业 王者荣耀官网6个页面无js 下载地址 https://download.csdn.net/download/qq_42431718/89571150 目录1 目录2 项目视频 王者荣耀6个页面(无js) 页面1 页面2 页面3 页面4 页面5 页面6...
在windows上使用Docker部署一个简易的web程序
使用Docker部署一个python的web服务🚀 由于是从事算法相关工作,之前在项目中,需要将写完的代码服务,部署在docker上,以此是开始接触了Docker这个工具,由于之前也没系统学习过,之后应该可能还会用…...
css实现圆环展示百分比,根据值动态展示所占比例
代码如下 <view class""><view class"circle-chart"><view v-if"!!num" class"pie-item" :style"{background: conic-gradient(var(--one-color) 0%,#E9E6F1 ${num}%),}"></view><view v-else …...
Appium+python自动化(十六)- ADB命令
简介 Android 调试桥(adb)是多种用途的工具,该工具可以帮助你你管理设备或模拟器 的状态。 adb ( Android Debug Bridge)是一个通用命令行工具,其允许您与模拟器实例或连接的 Android 设备进行通信。它可为各种设备操作提供便利,如安装和调试…...
Admin.Net中的消息通信SignalR解释
定义集线器接口 IOnlineUserHub public interface IOnlineUserHub {/// 在线用户列表Task OnlineUserList(OnlineUserList context);/// 强制下线Task ForceOffline(object context);/// 发布站内消息Task PublicNotice(SysNotice context);/// 接收消息Task ReceiveMessage(…...
解锁数据库简洁之道:FastAPI与SQLModel实战指南
在构建现代Web应用程序时,与数据库的交互无疑是核心环节。虽然传统的数据库操作方式(如直接编写SQL语句与psycopg2交互)赋予了我们精细的控制权,但在面对日益复杂的业务逻辑和快速迭代的需求时,这种方式的开发效率和可…...
【第二十一章 SDIO接口(SDIO)】
第二十一章 SDIO接口 目录 第二十一章 SDIO接口(SDIO) 1 SDIO 主要功能 2 SDIO 总线拓扑 3 SDIO 功能描述 3.1 SDIO 适配器 3.2 SDIOAHB 接口 4 卡功能描述 4.1 卡识别模式 4.2 卡复位 4.3 操作电压范围确认 4.4 卡识别过程 4.5 写数据块 4.6 读数据块 4.7 数据流…...
12.找到字符串中所有字母异位词
🧠 题目解析 题目描述: 给定两个字符串 s 和 p,找出 s 中所有 p 的字母异位词的起始索引。 返回的答案以数组形式表示。 字母异位词定义: 若两个字符串包含的字符种类和出现次数完全相同,顺序无所谓,则互为…...
涂鸦T5AI手搓语音、emoji、otto机器人从入门到实战
“🤖手搓TuyaAI语音指令 😍秒变表情包大师,让萌系Otto机器人🔥玩出智能新花样!开整!” 🤖 Otto机器人 → 直接点明主体 手搓TuyaAI语音 → 强调 自主编程/自定义 语音控制(TuyaAI…...
Mac下Android Studio扫描根目录卡死问题记录
环境信息 操作系统: macOS 15.5 (Apple M2芯片)Android Studio版本: Meerkat Feature Drop | 2024.3.2 Patch 1 (Build #AI-243.26053.27.2432.13536105, 2025年5月22日构建) 问题现象 在项目开发过程中,提示一个依赖外部头文件的cpp源文件需要同步,点…...
Device Mapper 机制
Device Mapper 机制详解 Device Mapper(简称 DM)是 Linux 内核中的一套通用块设备映射框架,为 LVM、加密磁盘、RAID 等提供底层支持。本文将详细介绍 Device Mapper 的原理、实现、内核配置、常用工具、操作测试流程,并配以详细的…...
【C++特殊工具与技术】优化内存分配(一):C++中的内存分配
目录 一、C 内存的基本概念 1.1 内存的物理与逻辑结构 1.2 C 程序的内存区域划分 二、栈内存分配 2.1 栈内存的特点 2.2 栈内存分配示例 三、堆内存分配 3.1 new和delete操作符 4.2 内存泄漏与悬空指针问题 4.3 new和delete的重载 四、智能指针…...
