大型语言模型的生物医学知识图优化提示生成
大型语言模型的生物医学知识图优化提示生成

https://arxiv.org/abs/2311.17330
https://github.com/BaranziniLab/KG_RAG
大型语言模型的生物医学知识图优化提示生成
摘要
KG-RAG框架,较好的结合了生物医学知识图谱SPOKE和LLM的优势。SPOKE是一个开放知识图谱,提供数据下载和开放API,整合了超过40个公开可用的生物医学知识源,涵盖了基因、蛋白质、药物、化合物、疾病等概念和概念之间的关系,可以为LLM提供一个强大的医疗领域知识。
研究人员对KG-RAG框架进行了广泛的测试,包括单跳和双跳提示、药物再利用查询、生物医学真假问题和多项选择题。结果表明,KG-RAG显著提高了LLMs的性能,特别是在具有挑战性的多项选择题数据集上,LLMs都取得了较大的提升。此外,KG-RAG还能够提供有意义的药物再利用建议,并在回答中体现出对临床试验必要性的谨慎态度。

工作原理
KG-RAG框架的工作原理包括以下步骤:
1.实体识别:从用户输入的query中识别出疾病实体,然后在SPOKE知识图谱中找到相应的节点。
2.上下文提取:从SPOKE知识图谱中提取与疾病节点相关的上下文信息,并将其转换为自然语言。
3.提示组装:将提取的上下文与原始prompt结合。
4.文本生成:使用LLM(如Llama-2-13b、GPT-3.5-Turbo或GPT-4)生成有意义的生物医学文本。
实体识别
区别于用小模型去做NER,KG-RAG里使用LLM识别实体。
- 实体抽取(Disease Entity Extraction)
在KG-RAG框架中,这一过程是通过零样本提示(zero-shot prompting)实现的。研究人员设计了一个高效的抽取prompt,引导大型语言模型(如GPT-3.5-Turbo)从输入文本中提取疾病实体,并将结果以JSON格式返回。
def disease_entity_extractor_v2(text): chat_model_id, chat_deployment_id = get_gpt35() prompt_updated = system_prompts["DISEASE_ENTITY_EXTRACTION"] + "\n" + "Sentence : " + text resp = get_GPT_response(prompt_updated, system_prompts["DISEASE_ENTITY_EXTRACTION"], chat_model_id, chat_deployment_id, temperature=0) try: entity_dict = json.loads(resp) return entity_dict["Diseases"] except: return NoneYou are an expert disease entity extractor from a sentence and report it as JSON in the following format: Diseases: <List of extracted entities> Please report only Diseases. Do not report any other entities like Genes, Proteins, Enzymes etc.
实体链接(Entity Matching to SPOKE)
疾病实体抽取出来后,下一步就是将这些实体与SPOKE知识图谱中的疾病实体进行匹配,也就是传统NLP任务中的实体链接,KG-RAG这个框架中采用的方法是,用语义相似度的方式来做。
- 实体embedding计算:首先,使用Embedding模型(如’all-MiniLM-L6-v2’)为SPOKE知识图谱中的所有疾病概念节点计算embedding向量
- 将计算出的疾病embedding存储在向量数据库
- 语义搜索匹配:将LLM提取的疾病实体与向量数据库
当然,如果零样本方法未能识别出疾病实体,采取的办法是直接拿原始query去匹配,取top 5。
最终,实体匹配过程会输出与输入文本提示中的疾病实体最相关的SPOKE知识图谱节点。这些节点及其相关信息将用于后续的上下文提取和文本生成步骤。通过这种方法,KG-RAG框架能够有效地从专业文本中提取和识别疾病实体,并将其与丰富的生物医学知识库相连接,从而生成准确、可靠的生物医学相关信息。
子图查询与剪枝
子图查询
在得到具体的实体后,紧接着就是从KG中去查询这个实体关联的子图,这些信息通常以三元组(Subject, Predicate, Object)的形式存在,表示不同的生物医学关系。通常情况下,可以查询1~3跳内的三元组信息,这里借助图数据库可以比较容易的实现。
得到的三元组信息,LLM可能不太能比较好的理解,这里就需要将三元组转换成自然语言,以便与输入提示结合并用于后续的文本生成。举个例子:
(Disease hypertension, ASSOCIATES_DaG, Gene VHL) → `Disease hypertension associates Gene VHL`
上下文剪枝
在KG-RAG框架中,Context Pruning(上下文剪枝)是一个关键步骤,就和dfs遍历时,需要剪枝来减少遍历时间一样,这里的剪枝可以减少给LLM的信息,减少token数量,同时过滤掉一些无用信心,还能提升LLM回答的精确性。
Context Pruning的具体做法还是会基于embedding来计算语义相似度,大概就是使用embedding模型计算三元组和query的cos相似度,最后选择策略:
- 条件一:上下文关联的余弦相似度必须大于所有提取上下文关联的相似度分布的75%分位
- 条件二:余弦相似度的最小值必须达到0.5
通过这个0.5 和 75%,可以有效减少给LLM的无效信息,有助于提高后续文本生成的准确性和相关性。
提示组装与文本生成
这里就简单了,就是和question一起,组合为propmt,再加上SYSTEM_PROMPT,送给LLM回答:
question = row["text"]
#检索
context = retrieve_context(question, vectorstore, embedding_function_for_context_retrieval, node_context_df, context_volume, QUESTION_VS_CONTEXT_SIMILARITY_PERCENTILE_THRESHOLD, QUESTION_VS_CONTEXT_MINIMUM_SIMILARITY, edge_evidence)
#
enriched_prompt = "Context: "+ context + "\n" + "Question: " + question
output = get_GPT_response(enriched_prompt, SYSTEM_PROMPT, CHAT_MODEL_ID, CHAT_DEPLOYMENT_ID, temperature=TEMPERATURE)
if not output:
enriched_prompt = "Context: "+ context + "\n" + "Question: "+ question
这里的SYSTEM_PROMPT:
One-Hop Validation
SINGLE_DISEASE_ENTITY_VALIDATION: | You are an expert biomedical researcher. For answering the Question at the end, you need to first read the Context provided. Then give your final answer by considering the context and your inherent knowledge on the topic. Give your answer in the following JSON format: {Compounds: <list of compounds>, Diseases: <list of diseases>} # Two-Hop Validation
TWO_DISEASE_ENTITY_VALIDATION: | You are an expert biomedical researcher. For answering the Question at the end, you need to first read the Context provided. Then give your final answer by considering the context and your inherent knowledge on the topic. Give your answer in the following JSON format: {Nodes: <list of nodes>}
KG-RAG 在应用中落地思考
KG-RAG 给出了如何结合KG来做RAG的一个有效方案,但这里再工业场景中落地,还有很多是我们细致去思考的。比如NER实体识别这里,通过LLM来抽取,再来做entity link,这里的效率肯定是感人的,其实这里传统的bert模型就可以了,成本可以忽略不计。
再则,剪枝这里,原始的实现效率是很低的,这里的embedding模型也需要专门去微调训练。三元组转换成自然语言,这里也是有讲究,如何生成更通顺的自然语言,更好的做法LLM+人工,确定好模版,通过模版生成。另外,是先是被实体,然后去查询实体的关联子图,还是全图查询,通过实体来过滤,都是可以考虑的点。
总结
KG-RAG框架通过结合生物医学知识图谱和LLM,为生物医学领域的问题提供了通用的解决方案。不仅提高了模型的性能,而且简化了流程,使其更具成本效益和时间效率。
在其他领域如何去应用KG做RAG,一方面可以扩展该框架,另外一方面,也要结合自己的实际场景去定制具体的策略。
相关文章:
大型语言模型的生物医学知识图优化提示生成
大型语言模型的生物医学知识图优化提示生成 https://arxiv.org/abs/2311.17330 https://github.com/BaranziniLab/KG_RAG 大型语言模型的生物医学知识图优化提示生成 摘要 KG-RAG框架,较好的结合了生物医学知识图谱SPOKE和LLM的优势。SPOKE是一个开放知识图谱&…...
winform datagrid 全部勾选
如果我们想要进行全选或全部取消,在数据较多的情况下,这种方法显然特别繁琐。怎么办呢? 当然是加以一个全选按钮了,选中全选按钮则全选,否则取消。笔者本想在红色圆圈位置添加全选复选框的,那样看起来更加…...
从 NextJS SSRF 漏洞看 Host 头滥用所带来的危害
前言 本篇博文主要内容是通过代码审计以及场景复现一个 NextJS 的安全漏洞(CVE-2024-34351)来讲述滥用 Host 头的危害。 严正声明:本博文所讨论的技术仅用于研究学习,旨在增强读者的信息安全意识,提高信息安全防护技能…...
LC617-合并二叉树
文章目录 1 题目描述2 思路优化代码完整输入输出 参考 1 题目描述 https://leetcode.cn/problems/merge-two-binary-trees/description/ 给你两棵二叉树: root1 和 root2 。 将其中一棵覆盖到另一棵之上时,两棵树上的一些节点将会重叠(而另…...
深入解析:端到端目标检测模型的奥秘
深入解析:端到端目标检测模型的奥秘 在人工智能领域,计算机视觉任务一直是研究的热点之一。目标检测作为计算机视觉中的核心问题,其重要性不言而喻。端到端的目标检测模型,以其高效的性能和简洁的架构,逐渐成为研究和…...
xmind--如何快速将Excel表中多列数据,复制到XMind分成多级主题
每次要将表格中的数据分成多级时,只能复制粘贴吗 快来试试这个简易的方法吧 这个是原始的表格,分成了4级 步骤: 1、我们可以先按照这个层级设置下空列(后买你会用到这个空列) 二级不用加、三级前面加一列、四级前面加…...
在 Android 上实现语音命令识别:详细指南
在 Android 上实现语音命令识别:详细指南 语音命令识别在现代 Android 应用中变得越来越普遍。它允许用户通过自然语言与设备进行交互,从而提升用户体验。本文将详细介绍如何在 Android 上实现语音命令识别,包括基本实现、带有占位槽位的命令处理,以及相关的配置和调试步骤…...
怎么理解FPGA的查找表与CPLD的乘积项
怎么理解 fpga的查找表 与cpld的乘积项 FPGA(现场可编程门阵列)和CPLD(复杂可编程逻辑器件)是两种常见的数字逻辑器件,它们在内部架构和工作原理上有着一些显著的区别。理解FPGA的查找表(LUT,L…...
51.2T 800G 以太网交换机,赋能AI开放生态
IB与以太之争 以太网替代IB趋势明显。据相关报告:2024年TOP500的超算中,采用以太网方案占比48.5%,InfiniBand占比为39.2%,其中排名前6的超算中已有5个使用以太网互联。 开放系统战胜封闭系统仅是时间问题。我们已经看到…...
【制作100个unity游戏之31】用unity制作一个爬坡2d赛车小游戏
最终效果 【制作100个unity游戏之31】用unity制作一个爬坡2d赛车小游戏 前言 今天用unity制作一个简单的爬坡2d赛车小游戏 素材 https://www.spriters-resource.com/mobile/hillclimbracing/ 拼装车素材 车身添加碰撞体,摩檫力0 轮胎添加碰撞体和刚体࿰…...
Spring Boot 注解 @PostConstruct 介绍
Spring Boot 注解 PostConstruct 介绍 文章目录 Spring Boot 注解 PostConstruct 介绍一、基本介绍二、PostConstruct 的执行时机Spring Bean 的生命周期PostConstruct 的确切执行时机执行顺序示例重要注意事项 三、使用场景及代码示例1. 初始化资源:比如打开数据库…...
深度学习环境配置报错解决日记
2024年7越24日 1、detectron2需要编译 首先需要在自己创建的虚拟环境中下载一下detectron2 conda create -n pytorch python3.9 conda activate pythorch git clone https://github.com/facebookresearch/detectron2.git 接下来就是编译环节: 在win系统中&…...
百度,有道,谷歌翻译API
API翻译 百度,有道,谷歌API翻译(只针对中英相互翻译),其他语言翻译需要对应from,to的code 百度翻译 package fills.tools.translate; import java.util.ArrayList; import java.util.HashMap; import java.util.Lis…...
java-双亲委派机制
Java虚拟机(JVM)中的类加载器(Class Loader)负责将类(.class文件)加载到JVM中,以便Java程序能够使用这些类。在JVM中,类加载器被组织成一种层次结构关系,这种层次结构关系…...
【C++】set的使用
🔥个人主页: Forcible Bug Maker 🔥专栏: STL || C 目录 🌈前言🌈关于set🔥容量函数emptysize 🔥Modifiersinserteraseclear 🔥Operationsfindcountlower_bound和upper_…...
React 18【实用教程】(2024最新版)
搭建开发环境 含配置,react-developer-tools 和 Redux DevTools 下载安装 https://blog.csdn.net/weixin_41192489/article/details/138523829 JSX 语法 https://blog.csdn.net/weixin_41192489/article/details/138649165 组件 父子组件传值、兄弟组件传值、越层组…...
Perl语言入门学习指南
Perl语言(Practical Extraction and Report Language)是一种强大的脚本语言,以其灵活性和强大的文本处理能力而闻名。Perl广泛应用于系统管理、Web开发、网络编程和数据处理等领域。本文将带您入门Perl语言,介绍其基本语法、常用功…...
《Java8函数式编程》学习笔记汇总
前言 见证了java8的多层排序,为此想系统学习下java8的用法。 目录 简介Lambda表达式流高级集合类和收集器数据并行化测试、调试和重构设计和架构的原则使用Lambda表达式编写并发程序下一步改怎么办 后记...
C语言之封装,继承,多态
本文参考: c语言面向对象之封装c面向对象之继承Linux源码分析之多态 一、封装 封装的本质就是将数据和方法集中到一个对象中,c或者java使用的是class来实现。c语言中可以使用struct来实现同样的功能。比如下面的程序: struct student {int…...
GO内存分配详解
文章目录 GO内存分配详解一. 物理内存(Physical Memory)和虚拟内存(Virtual Memory)二. 内存分配器三. TCMalloc线程内存(thread memory)页堆(page heap)四. Go内存分配器mspanmcachemcentralmheap五. 对象分配流程六. Go虚拟内存ArenaGO内存分配详解 这篇文章中我将抽丝剥茧,…...
挑战杯推荐项目
“人工智能”创意赛 - 智能艺术创作助手:借助大模型技术,开发能根据用户输入的主题、风格等要求,生成绘画、音乐、文学作品等多种形式艺术创作灵感或初稿的应用,帮助艺术家和创意爱好者激发创意、提高创作效率。 - 个性化梦境…...
idea大量爆红问题解决
问题描述 在学习和工作中,idea是程序员不可缺少的一个工具,但是突然在有些时候就会出现大量爆红的问题,发现无法跳转,无论是关机重启或者是替换root都无法解决 就是如上所展示的问题,但是程序依然可以启动。 问题解决…...
【网络】每天掌握一个Linux命令 - iftop
在Linux系统中,iftop是网络管理的得力助手,能实时监控网络流量、连接情况等,帮助排查网络异常。接下来从多方面详细介绍它。 目录 【网络】每天掌握一个Linux命令 - iftop工具概述安装方式核心功能基础用法进阶操作实战案例面试题场景生产场景…...
阿里云ACP云计算备考笔记 (5)——弹性伸缩
目录 第一章 概述 第二章 弹性伸缩简介 1、弹性伸缩 2、垂直伸缩 3、优势 4、应用场景 ① 无规律的业务量波动 ② 有规律的业务量波动 ③ 无明显业务量波动 ④ 混合型业务 ⑤ 消息通知 ⑥ 生命周期挂钩 ⑦ 自定义方式 ⑧ 滚的升级 5、使用限制 第三章 主要定义 …...
[ICLR 2022]How Much Can CLIP Benefit Vision-and-Language Tasks?
论文网址:pdf 英文是纯手打的!论文原文的summarizing and paraphrasing。可能会出现难以避免的拼写错误和语法错误,若有发现欢迎评论指正!文章偏向于笔记,谨慎食用 目录 1. 心得 2. 论文逐段精读 2.1. Abstract 2…...
Module Federation 和 Native Federation 的比较
前言 Module Federation 是 Webpack 5 引入的微前端架构方案,允许不同独立构建的应用在运行时动态共享模块。 Native Federation 是 Angular 官方基于 Module Federation 理念实现的专为 Angular 优化的微前端方案。 概念解析 Module Federation (模块联邦) Modul…...
JUC笔记(上)-复习 涉及死锁 volatile synchronized CAS 原子操作
一、上下文切换 即使单核CPU也可以进行多线程执行代码,CPU会给每个线程分配CPU时间片来实现这个机制。时间片非常短,所以CPU会不断地切换线程执行,从而让我们感觉多个线程是同时执行的。时间片一般是十几毫秒(ms)。通过时间片分配算法执行。…...
Unsafe Fileupload篇补充-木马的详细教程与木马分享(中国蚁剑方式)
在之前的皮卡丘靶场第九期Unsafe Fileupload篇中我们学习了木马的原理并且学了一个简单的木马文件 本期内容是为了更好的为大家解释木马(服务器方面的)的原理,连接,以及各种木马及连接工具的分享 文件木马:https://w…...
浪潮交换机配置track检测实现高速公路收费网络主备切换NQA
浪潮交换机track配置 项目背景高速网络拓扑网络情况分析通信线路收费网络路由 收费汇聚交换机相应配置收费汇聚track配置 项目背景 在实施省内一条高速公路时遇到的需求,本次涉及的主要是收费汇聚交换机的配置,浪潮网络设备在高速项目很少,通…...
[ACTF2020 新生赛]Include 1(php://filter伪协议)
题目 做法 启动靶机,点进去 点进去 查看URL,有 ?fileflag.php说明存在文件包含,原理是php://filter 协议 当它与包含函数结合时,php://filter流会被当作php文件执行。 用php://filter加编码,能让PHP把文件内容…...
