大型语言模型的生物医学知识图优化提示生成
大型语言模型的生物医学知识图优化提示生成
https://arxiv.org/abs/2311.17330
https://github.com/BaranziniLab/KG_RAG
大型语言模型的生物医学知识图优化提示生成
摘要
KG-RAG框架,较好的结合了生物医学知识图谱SPOKE和LLM的优势。SPOKE是一个开放知识图谱,提供数据下载和开放API,整合了超过40个公开可用的生物医学知识源,涵盖了基因、蛋白质、药物、化合物、疾病等概念和概念之间的关系,可以为LLM提供一个强大的医疗领域知识。
研究人员对KG-RAG框架进行了广泛的测试,包括单跳和双跳提示、药物再利用查询、生物医学真假问题和多项选择题。结果表明,KG-RAG显著提高了LLMs的性能,特别是在具有挑战性的多项选择题数据集上,LLMs都取得了较大的提升。此外,KG-RAG还能够提供有意义的药物再利用建议,并在回答中体现出对临床试验必要性的谨慎态度。
工作原理
KG-RAG框架的工作原理包括以下步骤:
1.实体识别:从用户输入的query中识别出疾病实体,然后在SPOKE知识图谱中找到相应的节点。
2.上下文提取:从SPOKE知识图谱中提取与疾病节点相关的上下文信息,并将其转换为自然语言。
3.提示组装:将提取的上下文与原始prompt结合。
4.文本生成:使用LLM(如Llama-2-13b、GPT-3.5-Turbo或GPT-4)生成有意义的生物医学文本。
实体识别
区别于用小模型去做NER,KG-RAG里使用LLM识别实体。
- 实体抽取(Disease Entity Extraction)
在KG-RAG框架中,这一过程是通过零样本提示(zero-shot prompting)实现的。研究人员设计了一个高效的抽取prompt,引导大型语言模型(如GPT-3.5-Turbo)从输入文本中提取疾病实体,并将结果以JSON格式返回。
def disease_entity_extractor_v2(text): chat_model_id, chat_deployment_id = get_gpt35() prompt_updated = system_prompts["DISEASE_ENTITY_EXTRACTION"] + "\n" + "Sentence : " + text resp = get_GPT_response(prompt_updated, system_prompts["DISEASE_ENTITY_EXTRACTION"], chat_model_id, chat_deployment_id, temperature=0) try: entity_dict = json.loads(resp) return entity_dict["Diseases"] except: return NoneYou are an expert disease entity extractor from a sentence and report it as JSON in the following format: Diseases: <List of extracted entities> Please report only Diseases. Do not report any other entities like Genes, Proteins, Enzymes etc.
实体链接(Entity Matching to SPOKE)
疾病实体抽取出来后,下一步就是将这些实体与SPOKE知识图谱中的疾病实体进行匹配,也就是传统NLP任务中的实体链接,KG-RAG这个框架中采用的方法是,用语义相似度的方式来做。
- 实体embedding计算:首先,使用Embedding模型(如’all-MiniLM-L6-v2’)为SPOKE知识图谱中的所有疾病概念节点计算embedding向量
- 将计算出的疾病embedding存储在向量数据库
- 语义搜索匹配:将LLM提取的疾病实体与向量数据库
当然,如果零样本方法未能识别出疾病实体,采取的办法是直接拿原始query去匹配,取top 5。
最终,实体匹配过程会输出与输入文本提示中的疾病实体最相关的SPOKE知识图谱节点。这些节点及其相关信息将用于后续的上下文提取和文本生成步骤。通过这种方法,KG-RAG框架能够有效地从专业文本中提取和识别疾病实体,并将其与丰富的生物医学知识库相连接,从而生成准确、可靠的生物医学相关信息。
子图查询与剪枝
子图查询
在得到具体的实体后,紧接着就是从KG中去查询这个实体关联的子图,这些信息通常以三元组(Subject, Predicate, Object)的形式存在,表示不同的生物医学关系。通常情况下,可以查询1~3跳内的三元组信息,这里借助图数据库可以比较容易的实现。
得到的三元组信息,LLM可能不太能比较好的理解,这里就需要将三元组转换成自然语言,以便与输入提示结合并用于后续的文本生成。举个例子:
(Disease hypertension, ASSOCIATES_DaG, Gene VHL) → `Disease hypertension associates Gene VHL`
上下文剪枝
在KG-RAG框架中,Context Pruning(上下文剪枝)是一个关键步骤,就和dfs遍历时,需要剪枝来减少遍历时间一样,这里的剪枝可以减少给LLM的信息,减少token数量,同时过滤掉一些无用信心,还能提升LLM回答的精确性。
Context Pruning的具体做法还是会基于embedding来计算语义相似度,大概就是使用embedding模型计算三元组和query的cos相似度,最后选择策略:
- 条件一:上下文关联的余弦相似度必须大于所有提取上下文关联的相似度分布的75%分位
- 条件二:余弦相似度的最小值必须达到0.5
通过这个0.5 和 75%,可以有效减少给LLM的无效信息,有助于提高后续文本生成的准确性和相关性。
提示组装与文本生成
这里就简单了,就是和question一起,组合为propmt,再加上SYSTEM_PROMPT,送给LLM回答:
question = row["text"]
#检索
context = retrieve_context(question, vectorstore, embedding_function_for_context_retrieval, node_context_df, context_volume, QUESTION_VS_CONTEXT_SIMILARITY_PERCENTILE_THRESHOLD, QUESTION_VS_CONTEXT_MINIMUM_SIMILARITY, edge_evidence)
#
enriched_prompt = "Context: "+ context + "\n" + "Question: " + question
output = get_GPT_response(enriched_prompt, SYSTEM_PROMPT, CHAT_MODEL_ID, CHAT_DEPLOYMENT_ID, temperature=TEMPERATURE)
if not output:
enriched_prompt = "Context: "+ context + "\n" + "Question: "+ question
这里的SYSTEM_PROMPT
:
One-Hop Validation
SINGLE_DISEASE_ENTITY_VALIDATION: | You are an expert biomedical researcher. For answering the Question at the end, you need to first read the Context provided. Then give your final answer by considering the context and your inherent knowledge on the topic. Give your answer in the following JSON format: {Compounds: <list of compounds>, Diseases: <list of diseases>} # Two-Hop Validation
TWO_DISEASE_ENTITY_VALIDATION: | You are an expert biomedical researcher. For answering the Question at the end, you need to first read the Context provided. Then give your final answer by considering the context and your inherent knowledge on the topic. Give your answer in the following JSON format: {Nodes: <list of nodes>}
KG-RAG 在应用中落地思考
KG-RAG 给出了如何结合KG来做RAG的一个有效方案,但这里再工业场景中落地,还有很多是我们细致去思考的。比如NER实体识别这里,通过LLM来抽取,再来做entity link,这里的效率肯定是感人的,其实这里传统的bert模型就可以了,成本可以忽略不计。
再则,剪枝这里,原始的实现效率是很低的,这里的embedding模型也需要专门去微调训练。三元组转换成自然语言,这里也是有讲究,如何生成更通顺的自然语言,更好的做法LLM+人工,确定好模版,通过模版生成。另外,是先是被实体,然后去查询实体的关联子图,还是全图查询,通过实体来过滤,都是可以考虑的点。
总结
KG-RAG框架通过结合生物医学知识图谱和LLM,为生物医学领域的问题提供了通用的解决方案。不仅提高了模型的性能,而且简化了流程,使其更具成本效益和时间效率。
在其他领域如何去应用KG做RAG,一方面可以扩展该框架,另外一方面,也要结合自己的实际场景去定制具体的策略。
相关文章:

大型语言模型的生物医学知识图优化提示生成
大型语言模型的生物医学知识图优化提示生成 https://arxiv.org/abs/2311.17330 https://github.com/BaranziniLab/KG_RAG 大型语言模型的生物医学知识图优化提示生成 摘要 KG-RAG框架,较好的结合了生物医学知识图谱SPOKE和LLM的优势。SPOKE是一个开放知识图谱&…...
winform datagrid 全部勾选
如果我们想要进行全选或全部取消,在数据较多的情况下,这种方法显然特别繁琐。怎么办呢? 当然是加以一个全选按钮了,选中全选按钮则全选,否则取消。笔者本想在红色圆圈位置添加全选复选框的,那样看起来更加…...

从 NextJS SSRF 漏洞看 Host 头滥用所带来的危害
前言 本篇博文主要内容是通过代码审计以及场景复现一个 NextJS 的安全漏洞(CVE-2024-34351)来讲述滥用 Host 头的危害。 严正声明:本博文所讨论的技术仅用于研究学习,旨在增强读者的信息安全意识,提高信息安全防护技能…...

LC617-合并二叉树
文章目录 1 题目描述2 思路优化代码完整输入输出 参考 1 题目描述 https://leetcode.cn/problems/merge-two-binary-trees/description/ 给你两棵二叉树: root1 和 root2 。 将其中一棵覆盖到另一棵之上时,两棵树上的一些节点将会重叠(而另…...
深入解析:端到端目标检测模型的奥秘
深入解析:端到端目标检测模型的奥秘 在人工智能领域,计算机视觉任务一直是研究的热点之一。目标检测作为计算机视觉中的核心问题,其重要性不言而喻。端到端的目标检测模型,以其高效的性能和简洁的架构,逐渐成为研究和…...

xmind--如何快速将Excel表中多列数据,复制到XMind分成多级主题
每次要将表格中的数据分成多级时,只能复制粘贴吗 快来试试这个简易的方法吧 这个是原始的表格,分成了4级 步骤: 1、我们可以先按照这个层级设置下空列(后买你会用到这个空列) 二级不用加、三级前面加一列、四级前面加…...

在 Android 上实现语音命令识别:详细指南
在 Android 上实现语音命令识别:详细指南 语音命令识别在现代 Android 应用中变得越来越普遍。它允许用户通过自然语言与设备进行交互,从而提升用户体验。本文将详细介绍如何在 Android 上实现语音命令识别,包括基本实现、带有占位槽位的命令处理,以及相关的配置和调试步骤…...

怎么理解FPGA的查找表与CPLD的乘积项
怎么理解 fpga的查找表 与cpld的乘积项 FPGA(现场可编程门阵列)和CPLD(复杂可编程逻辑器件)是两种常见的数字逻辑器件,它们在内部架构和工作原理上有着一些显著的区别。理解FPGA的查找表(LUT,L…...

51.2T 800G 以太网交换机,赋能AI开放生态
IB与以太之争 以太网替代IB趋势明显。据相关报告:2024年TOP500的超算中,采用以太网方案占比48.5%,InfiniBand占比为39.2%,其中排名前6的超算中已有5个使用以太网互联。 开放系统战胜封闭系统仅是时间问题。我们已经看到…...

【制作100个unity游戏之31】用unity制作一个爬坡2d赛车小游戏
最终效果 【制作100个unity游戏之31】用unity制作一个爬坡2d赛车小游戏 前言 今天用unity制作一个简单的爬坡2d赛车小游戏 素材 https://www.spriters-resource.com/mobile/hillclimbracing/ 拼装车素材 车身添加碰撞体,摩檫力0 轮胎添加碰撞体和刚体࿰…...
Spring Boot 注解 @PostConstruct 介绍
Spring Boot 注解 PostConstruct 介绍 文章目录 Spring Boot 注解 PostConstruct 介绍一、基本介绍二、PostConstruct 的执行时机Spring Bean 的生命周期PostConstruct 的确切执行时机执行顺序示例重要注意事项 三、使用场景及代码示例1. 初始化资源:比如打开数据库…...
深度学习环境配置报错解决日记
2024年7越24日 1、detectron2需要编译 首先需要在自己创建的虚拟环境中下载一下detectron2 conda create -n pytorch python3.9 conda activate pythorch git clone https://github.com/facebookresearch/detectron2.git 接下来就是编译环节: 在win系统中&…...

百度,有道,谷歌翻译API
API翻译 百度,有道,谷歌API翻译(只针对中英相互翻译),其他语言翻译需要对应from,to的code 百度翻译 package fills.tools.translate; import java.util.ArrayList; import java.util.HashMap; import java.util.Lis…...
java-双亲委派机制
Java虚拟机(JVM)中的类加载器(Class Loader)负责将类(.class文件)加载到JVM中,以便Java程序能够使用这些类。在JVM中,类加载器被组织成一种层次结构关系,这种层次结构关系…...

【C++】set的使用
🔥个人主页: Forcible Bug Maker 🔥专栏: STL || C 目录 🌈前言🌈关于set🔥容量函数emptysize 🔥Modifiersinserteraseclear 🔥Operationsfindcountlower_bound和upper_…...
React 18【实用教程】(2024最新版)
搭建开发环境 含配置,react-developer-tools 和 Redux DevTools 下载安装 https://blog.csdn.net/weixin_41192489/article/details/138523829 JSX 语法 https://blog.csdn.net/weixin_41192489/article/details/138649165 组件 父子组件传值、兄弟组件传值、越层组…...
Perl语言入门学习指南
Perl语言(Practical Extraction and Report Language)是一种强大的脚本语言,以其灵活性和强大的文本处理能力而闻名。Perl广泛应用于系统管理、Web开发、网络编程和数据处理等领域。本文将带您入门Perl语言,介绍其基本语法、常用功…...
《Java8函数式编程》学习笔记汇总
前言 见证了java8的多层排序,为此想系统学习下java8的用法。 目录 简介Lambda表达式流高级集合类和收集器数据并行化测试、调试和重构设计和架构的原则使用Lambda表达式编写并发程序下一步改怎么办 后记...
C语言之封装,继承,多态
本文参考: c语言面向对象之封装c面向对象之继承Linux源码分析之多态 一、封装 封装的本质就是将数据和方法集中到一个对象中,c或者java使用的是class来实现。c语言中可以使用struct来实现同样的功能。比如下面的程序: struct student {int…...

GO内存分配详解
文章目录 GO内存分配详解一. 物理内存(Physical Memory)和虚拟内存(Virtual Memory)二. 内存分配器三. TCMalloc线程内存(thread memory)页堆(page heap)四. Go内存分配器mspanmcachemcentralmheap五. 对象分配流程六. Go虚拟内存ArenaGO内存分配详解 这篇文章中我将抽丝剥茧,…...

手游刚开服就被攻击怎么办?如何防御DDoS?
开服初期是手游最脆弱的阶段,极易成为DDoS攻击的目标。一旦遭遇攻击,可能导致服务器瘫痪、玩家流失,甚至造成巨大经济损失。本文为开发者提供一套简洁有效的应急与防御方案,帮助快速应对并构建长期防护体系。 一、遭遇攻击的紧急应…...
零门槛NAS搭建:WinNAS如何让普通电脑秒变私有云?
一、核心优势:专为Windows用户设计的极简NAS WinNAS由深圳耘想存储科技开发,是一款收费低廉但功能全面的Windows NAS工具,主打“无学习成本部署” 。与其他NAS软件相比,其优势在于: 无需硬件改造:将任意W…...

智慧医疗能源事业线深度画像分析(上)
引言 医疗行业作为现代社会的关键基础设施,其能源消耗与环境影响正日益受到关注。随着全球"双碳"目标的推进和可持续发展理念的深入,智慧医疗能源事业线应运而生,致力于通过创新技术与管理方案,重构医疗领域的能源使用模式。这一事业线融合了能源管理、可持续发…...

以下是对华为 HarmonyOS NETX 5属性动画(ArkTS)文档的结构化整理,通过层级标题、表格和代码块提升可读性:
一、属性动画概述NETX 作用:实现组件通用属性的渐变过渡效果,提升用户体验。支持属性:width、height、backgroundColor、opacity、scale、rotate、translate等。注意事项: 布局类属性(如宽高)变化时&#…...

DAY 47
三、通道注意力 3.1 通道注意力的定义 # 新增:通道注意力模块(SE模块) class ChannelAttention(nn.Module):"""通道注意力模块(Squeeze-and-Excitation)"""def __init__(self, in_channels, reduction_rat…...
大语言模型如何处理长文本?常用文本分割技术详解
为什么需要文本分割? 引言:为什么需要文本分割?一、基础文本分割方法1. 按段落分割(Paragraph Splitting)2. 按句子分割(Sentence Splitting)二、高级文本分割策略3. 重叠分割(Sliding Window)4. 递归分割(Recursive Splitting)三、生产级工具推荐5. 使用LangChain的…...

对WWDC 2025 Keynote 内容的预测
借助我们以往对苹果公司发展路径的深入研究经验,以及大语言模型的分析能力,我们系统梳理了多年来苹果 WWDC 主题演讲的规律。在 WWDC 2025 即将揭幕之际,我们让 ChatGPT 对今年的 Keynote 内容进行了一个初步预测,聊作存档。等到明…...
python爬虫:Newspaper3k 的详细使用(好用的新闻网站文章抓取和解析的Python库)
更多内容请见: 爬虫和逆向教程-专栏介绍和目录 文章目录 一、Newspaper3k 概述1.1 Newspaper3k 介绍1.2 主要功能1.3 典型应用场景1.4 安装二、基本用法2.2 提取单篇文章的内容2.2 处理多篇文档三、高级选项3.1 自定义配置3.2 分析文章情感四、实战案例4.1 构建新闻摘要聚合器…...

MySQL 8.0 OCP 英文题库解析(十三)
Oracle 为庆祝 MySQL 30 周年,截止到 2025.07.31 之前。所有人均可以免费考取原价245美元的MySQL OCP 认证。 从今天开始,将英文题库免费公布出来,并进行解析,帮助大家在一个月之内轻松通过OCP认证。 本期公布试题111~120 试题1…...
MySQL中【正则表达式】用法
MySQL 中正则表达式通过 REGEXP 或 RLIKE 操作符实现(两者等价),用于在 WHERE 子句中进行复杂的字符串模式匹配。以下是核心用法和示例: 一、基础语法 SELECT column_name FROM table_name WHERE column_name REGEXP pattern; …...