当前位置: 首页 > news >正文

Pytorch transforms 的研究

绝对路径与相对路径差别

transforms的使用

from torchvision import transforms
from PIL import Imageimg_path ="dataset/train/bees/16838648_415acd9e3f.jpg"
img = Image.open(img_path)
tensor_trans = transforms.ToTensor()
tensor_img =tensor_trans(img)
print(tensor_img)

python中 导包写法复习

transforms.ToTensor() 的写法 transforms表示模块 ToTensor 表示函数 
from torchvision import transforms
  • from: 指明我们要从某个包或模块中导入。
  • torchvision: 这是一个包(package),是 PyTorch 生态系统中专门用于计算机视觉任务的库。
  • import: 指明我们要导入什么。
  • transforms: 这是 torchvision 包中的一个模块,专门用于图像转换和数据增强

Transforms 的使用(二)

from torchvision import transforms
from PIL import Image
from torch.utils.tensorboard import  SummaryWriterimg_path ="dataset/train/bees/16838648_415acd9e3f.jpg"
img = Image.open(img_path)writer = SummaryWriter("logs")tensor_trans = transforms.ToTensor()
tensor_img =tensor_trans(img)
writer.add_image("Tensor_img",tensor_img)
writer.close()

常见的transform

__call__的作用:

Totensor的使用 :

Normalize归一化的使用:

print(tensor_img[0][0][0])
trans_norm = transforms.Normalize([0.5,0.5,0.5],[0.5,0.5,0.5])
img_norm = trans_norm(tensor_img)
print(img_norm[0][0][0])
writer.close()

代码分析

三维均值与标准差

  1. 彩色图像结构:
    大多数彩色图像使用RGB(红、绿、蓝)颜色模型。每个像素由这三个颜色通道的值组成。

  2. 通道独立处理:
    在图像处理和深度学习中,通常会对每个颜色通道独立进行标准化。这意味着每个通道都有自己的均值和标准差。

  3. 三维均值和标准差:

    • 均值:[mean_R, mean_G, mean_B]
    • 标准差:[std_R, std_G, std_B]

    其中,mean_R 和 std_R 分别是红色通道的均值和标准差,以此类推。

标准化公式

def forward(self, tensor: Tensor) -> Tensor: return F.normalize(tensor, self.mean, self.std, self.inplace) 

这里的 F.normalize 是 PyTorch 的函数式接口中的一个函数,它封装了标准化的具体实现。虽然我们在这个类的定义中没有看到具体的计算过程,但是这个标准化公式是 F.normalize 函数内部实现的核心逻辑。

PyTorch 的文档和源码中会详细说明 F.normalize 函数的具体实现。标准化公式 output[channel] = (input[channel] - mean[channel]) / std[channel] 是在 F.normalize 函数内部执行的。

Resize的使用 

print(img.size)
trans_resize = transforms.Resize((512,512))
img_resize = trans_resize(img)
img_resize = tensor_trans(img_resize)
writer.add_image("Resize",img_resize,0)
print(img_resize)

Compose 的使用 :

Compose 将两个函数功能结合

trans_resize_2 = transforms.Resize(512)
trans_compose =  transforms.Compose([trans_resize_2,tensor_trans])
img_resize2 = trans_compose(img)
writer.add_image("Resize2",img_resize2,1)
writer.close()

RandomCrop裁剪:

trans_Randomcrop = transforms.RandomCrop(256)
trans_compose2 = transforms.Compose([trans_Randomcrop,tensor_trans])
for i in range(10):img_crop = trans_compose2(img)writer.add_image("Randomcrop",img_crop,i)
writer.close()

完整代码 

from torchvision import transforms
from PIL import Image
from torch.utils.tensorboard import  SummaryWriterimg_path ="dataset/train/bees/16838648_415acd9e3f.jpg"
img = Image.open(img_path)writer = SummaryWriter("logs")tensor_trans = transforms.ToTensor()
tensor_img =tensor_trans(img)
writer.add_image("Tensor_img",tensor_img)
#print(tensor_img)
#Normalize 归一化
print(tensor_img[0][0][0])
trans_norm = transforms.Normalize([0.5,0.5,0.5],[0.5,0.5,0.5])
img_norm = trans_norm(tensor_img)
print(img_norm[0][0][0])
writer.add_image("Normalize",img_norm)
writer.close()##Resize
print(img.size)
trans_resize = transforms.Resize((512,512))
img_resize = trans_resize(img)
img_resize = tensor_trans(img_resize)
writer.add_image("Resize",img_resize,0)
print(img_resize)#Compose
trans_resize_2 = transforms.Resize(64)
trans_compose =  transforms.Compose([trans_resize_2,tensor_trans])
img_resize2 = trans_compose(img)
writer.add_image("Resize2",img_resize2,1)
writer.close()
#RandomCrop
trans_Randomcrop = transforms.RandomCrop(256)
trans_compose2 = transforms.Compose([trans_Randomcrop,tensor_trans])
for i in range(10):img_crop = trans_compose2(img)writer.add_image("Randomcrop",img_crop,i)
writer.close()

相关文章:

Pytorch transforms 的研究

绝对路径与相对路径差别 transforms的使用 from torchvision import transforms from PIL import Imageimg_path "dataset/train/bees/16838648_415acd9e3f.jpg" img Image.open(img_path) tensor_trans transforms.ToTensor() tensor_img tensor_trans(img) prin…...

一个C++模板工厂的编译问题的解决。针对第三方库的构造函数以及追加了的对象构造函数。牵扯到重载、特化等

一窥模板的替换和匹配方式:偏特化的参数比泛化版本的还要多:判断是不是std::pair<,>。_stdpair模板参数太多-CSDN博客 简介 在一个项目里,调用了第三封的库,这个库里面有个类用的很多,而且其构…...

《昇思 25 天学习打卡营第 20 天 | Pix2Pix实现图像转换 》

《昇思 25 天学习打卡营第 20 天 | Pix2Pix实现图像转换 》 活动地址:https://xihe.mindspore.cn/events/mindspore-training-camp 签名:Sam9029 Pix2Pix模型概述 Pix2Pix是一种基于条件生成对抗网络(cGAN)的图像转换模型&#x…...

关于c#的简单应用三题

#region 输入一个正整数&#xff0c;求1~这个数的阶乘 public static void Factorial(int a) { int result 1; for (int i 1; i < a; i) { result result * i; } Console.WriteLine(result); } #endregion #region 一个游戏&#…...

(十三)Spring教程——依赖注入之工厂方法注入

1.工厂方法注入 工厂方法是在应用中被经常使用的设计模式&#xff0c;它也是控制反转和单例设计思想的主要实现方法。由于Spring IoC容器以框架的方式提供工厂方法的功能&#xff0c;并以透明的方式开放给开发者&#xff0c;所以很少需要手工编写基于工厂方法的类。正是因为工厂…...

Redission中的Lua脚本写法、理解

对于Redission看门狗机制中的为了保证原子性的Lua脚本的写法规则是什么样的呢 &#xff1f; 对于源码中的Lua脚本又是什么意思&#xff1f; 我们一起来看一下 首先&#xff0c;我们先基本的熟悉一下lua脚本的逻辑 在Lua脚本中&#xff0c;if (…) then … end 语句的执行过程…...

视频共享融合赋能平台LntonCVS视频监控管理平台视频云解决方案

LntonCVS是基于国家标准GB28181协议开发的视频监控与云服务平台&#xff0c;支持多设备同时接入。该平台能够处理和分发多种视频流格式&#xff0c;包括RTSP、RTMP、FLV、HLS和WebRTC。主要功能包括视频直播监控、云端录像与存储、检索回放、智能告警、语音对讲和平台级联&…...

GraphRAG + GPT-4o mini 低成本构建 AI 图谱知识库

更好的效果&#xff0c;更低的价格&#xff0c;听起来是不是像梦呓&#xff1f; 限制 首先&#xff0c;让我们来介绍一个词&#xff1a;RAG。 简单来说&#xff0c;RAG&#xff08;Retrieval-Augmented Generation&#xff0c;检索增强生成&#xff09; 的工作原理是将大型文档…...

全国区块链职业技能大赛第十套区块链产品需求分析与方案设计

任务1-1:区块链产品需求分析与方案设计 养老保险平台中涉及到参保人、社保局、公安局、工作单位等参与方,他们需要在区块链养老保险平台中完成账户注册、身份上链、社保代缴、信息核查等多种业务活动。通过对业务活动的功能分析,可以更好的服务系统的开发流程。基于养老保险…...

分布式Apollo配置中心搭建实战

文章目录 环境要求第一步、软件下载第二步、创建数据库参考文档 最近新项目启动&#xff0c;采用Apollo作为分布式的配置中心&#xff0c;在本地搭建huanj 实现原理图如下所示。 环境要求 Java版本要求&#xff1a;JDK1.8 MySql版本要求&#xff1a;5.6.5 Apollo版本要求&…...

Android monkey命令和monkey脚本详解

Monkey命令 monkey 是 Android 平台上一个非常有用的工具&#xff0c;它可以帮助开发者在设备上生成随机的用户事件流&#xff0c;如按键输入、触摸屏手势等&#xff0c;以此来测试应用的稳定性。这对于发现应用中的崩溃、异常和性能问题特别有用。 基本语法 adb shell monk…...

vue 实现对图片的某个区域点选, 并在该区域上方显示该部分内容

目录 1、通义灵码实现&#xff1a; 2、csdn的C知道&#xff1a; 3、百度comate&#xff1a; 1、通义灵码实现&#xff1a; 在 Vue 中实现对图片某个区域的点选并显示该区域属于哪一部分&#xff0c;通常涉及到几个关键步骤&#xff1a; 图片区域划分&#xff1a; 首先&#…...

配置文件格式 INI 快速上手

文章目录 1.简介2.语法节键值对注释大小写空白行数据类型字符串 (String)整数 (Integer)浮点数 (Float)布尔值 (Boolean)列表 (List) 3.示例4.解析参考文献 1.简介 INI 的全称是 Initialization&#xff0c;即为初始化文件&#xff0c;最早是 Windows 系统配置文件所采用的格式…...

基于WebGoat平台的SQL注入攻击

目录 引言 一、安装好JAVA 二、下载并运行WebGoat 三、注册并登录WebGoat 四、模拟攻击 1. 第九题 2. 第十题 3. 第十一题 4. 第十二题 5. 第十三题 五、思考体会 1. 举例说明SQL 注入攻击发生的原因。 2. 从信息的CIA 三要素&#xff08;机密性、完整性、可用性&…...

SpringMvc有几个上下文

你好&#xff0c;我是柳岸花明。 SpringMVC作为Spring框架的重要组成部分&#xff0c;其启动流程和父子容器机制是理解整个框架运行机制的关键。本文将通过一系列详细的流程图&#xff0c;深入剖析SpringMVC的启动原理与父子容器的源码结构。 SpringMVC 父子容器 父容器的创建 …...

k8s部署rabbitmq集群

1 部署集群 1.1 安装 # 创建一个中间件的命名空间 kubectl create namespace middleware # 创建ConfigMap,包含RabbitMQ的配置文件内容 kubectl apply -f rabbitmq-configmap.yaml # 配置用于存储RabbitMQ数据的PersistentVolume&#xff08;PV&#xff09;和PersistentVolum…...

Python利用包pypinyin汉字转拼音(处理多音字)

一、汉字转拼音 在python中将汉字的拼音输出可以采用pypinyin包&#xff0c;一下是简单的demo示例&#xff1a; 默认调用pinyin方法转换时时默认时带声调的&#xff0c;不带声调需要添加“styleStyle.NORMAL”参数。 from pypinyin import pinyin, Styledef pinyin_transfer…...

推荐系统三十六式学习笔记:工程篇.常见架构24|典型的信息流架构是什么样的

目录 整体框架数据模型1.内容即Activity2.关系即连接 动态发布信息流排序数据管道总结 从今天起&#xff0c;我们不再单独介绍推荐算法的原理&#xff0c;而是开始进入一个新的模块-工程篇。 在工程实践的部分中&#xff0c;我首先介绍的内容是当今最热门的信息流架构。 信息…...

解决QEMU无法从非0x80000000处开始执行

解决QEMU无法从非0x80000000处开始执行 1 背景介绍2 问题描述3 原因分析4 解决办法5 踩坑回忆5.1 坑1 - 怀疑设备树有问题5.2 坑2 - 怀疑QEMU中内存未写入成功5.3 QEMU地址空间分析过程 1 背景介绍 在使用NEMU与QEMU做DiffTest的场景下&#xff0c;运行的固件为《RISC-V体系结…...

AI在候选人评估中的作用:精准筛选与HR决策的助力

一、引言 随着科技的迅猛发展&#xff0c;人工智能&#xff08;AI&#xff09;技术已逐渐渗透到各个行业和领域&#xff0c;人力资源管理&#xff08;HRM&#xff09;亦不例外。在候选人评估的环节中&#xff0c;AI技术以其高效、精准的特性&#xff0c;正在逐步改变着传统的招…...

React hook之useRef

React useRef 详解 useRef 是 React 提供的一个 Hook&#xff0c;用于在函数组件中创建可变的引用对象。它在 React 开发中有多种重要用途&#xff0c;下面我将全面详细地介绍它的特性和用法。 基本概念 1. 创建 ref const refContainer useRef(initialValue);initialValu…...

【JVM】- 内存结构

引言 JVM&#xff1a;Java Virtual Machine 定义&#xff1a;Java虚拟机&#xff0c;Java二进制字节码的运行环境好处&#xff1a; 一次编写&#xff0c;到处运行自动内存管理&#xff0c;垃圾回收的功能数组下标越界检查&#xff08;会抛异常&#xff0c;不会覆盖到其他代码…...

从零实现STL哈希容器:unordered_map/unordered_set封装详解

本篇文章是对C学习的STL哈希容器自主实现部分的学习分享 希望也能为你带来些帮助~ 那咱们废话不多说&#xff0c;直接开始吧&#xff01; 一、源码结构分析 1. SGISTL30实现剖析 // hash_set核心结构 template <class Value, class HashFcn, ...> class hash_set {ty…...

拉力测试cuda pytorch 把 4070显卡拉满

import torch import timedef stress_test_gpu(matrix_size16384, duration300):"""对GPU进行压力测试&#xff0c;通过持续的矩阵乘法来最大化GPU利用率参数:matrix_size: 矩阵维度大小&#xff0c;增大可提高计算复杂度duration: 测试持续时间&#xff08;秒&…...

【python异步多线程】异步多线程爬虫代码示例

claude生成的python多线程、异步代码示例&#xff0c;模拟20个网页的爬取&#xff0c;每个网页假设要0.5-2秒完成。 代码 Python多线程爬虫教程 核心概念 多线程&#xff1a;允许程序同时执行多个任务&#xff0c;提高IO密集型任务&#xff08;如网络请求&#xff09;的效率…...

分布式增量爬虫实现方案

之前我们在讨论的是分布式爬虫如何实现增量爬取。增量爬虫的目标是只爬取新产生或发生变化的页面&#xff0c;避免重复抓取&#xff0c;以节省资源和时间。 在分布式环境下&#xff0c;增量爬虫的实现需要考虑多个爬虫节点之间的协调和去重。 另一种思路&#xff1a;将增量判…...

零基础在实践中学习网络安全-皮卡丘靶场(第九期-Unsafe Fileupload模块)(yakit方式)

本期内容并不是很难&#xff0c;相信大家会学的很愉快&#xff0c;当然对于有后端基础的朋友来说&#xff0c;本期内容更加容易了解&#xff0c;当然没有基础的也别担心&#xff0c;本期内容会详细解释有关内容 本期用到的软件&#xff1a;yakit&#xff08;因为经过之前好多期…...

并发编程 - go版

1.并发编程基础概念 进程和线程 A. 进程是程序在操作系统中的一次执行过程&#xff0c;系统进行资源分配和调度的一个独立单位。B. 线程是进程的一个执行实体,是CPU调度和分派的基本单位,它是比进程更小的能独立运行的基本单位。C.一个进程可以创建和撤销多个线程;同一个进程中…...

Qt 事件处理中 return 的深入解析

Qt 事件处理中 return 的深入解析 在 Qt 事件处理中&#xff0c;return 语句的使用是另一个关键概念&#xff0c;它与 event->accept()/event->ignore() 密切相关但作用不同。让我们详细分析一下它们之间的关系和工作原理。 核心区别&#xff1a;不同层级的事件处理 方…...

提升移动端网页调试效率:WebDebugX 与常见工具组合实践

在日常移动端开发中&#xff0c;网页调试始终是一个高频但又极具挑战的环节。尤其在面对 iOS 与 Android 的混合技术栈、各种设备差异化行为时&#xff0c;开发者迫切需要一套高效、可靠且跨平台的调试方案。过去&#xff0c;我们或多或少使用过 Chrome DevTools、Remote Debug…...