当前位置: 首页 > news >正文

解决QEMU无法从非0x80000000处开始执行

解决QEMU无法从非0x80000000处开始执行

  • 1 背景介绍
  • 2 问题描述
  • 3 原因分析
  • 4 解决办法
  • 5 踩坑回忆
    • 5.1 坑1 - 怀疑设备树有问题
    • 5.2 坑2 - 怀疑QEMU中内存未写入成功
    • 5.3 QEMU地址空间分析过程

1 背景介绍

在使用NEMU与QEMU做DiffTest的场景下,运行的固件为《RISC-V体系结构编程与实践》中示例代码chapter_2,编译出来的固件二进制文件为:benos_payload.bin

将benos_payload.bin,放置在NEMU中内存0x80000000处,NEMU通过Socket发送放置到QEMU中内存0x31e00000处。

计划让QEMU直接从0x31e00000开始执行,而不是常规的0x80000000。

对NEMU源码,做了如下修改。将nemu/src/cpu/difftest/dut.c文件,init_difftest函数,修改为如下:

void init_difftest(char *ref_so_file, long img_size, int port) {...ref_difftest_init(port);// 将benos_payload.bin发送到QEMU的0x31e00000内存处ref_difftest_memcpy(0x31e00000, guest_to_host(RESET_VECTOR), img_size, DIFFTEST_TO_REF);// pc寄存器设置为0x31e00000cpu.pc = 0x31e00000;// 将NEMU的x0 ~ x31和pc寄存器值,发送到QEMU中,覆盖QEMU原有寄存器ref_difftest_regcpy(&cpu, DIFFTEST_TO_REF);// 让QEMU执行3000条指令ref_difftest_exec(3000);
}

只要NEMU执行了上述代码,那么QEMU的0x31e00000处保存的就是benos_payload.bin,并且pc寄存器值为0x31e00000,当执行ref_difftest_exec函数时,预期QEMU就可以从0x31e00000开始执行。

2 问题描述

QEMU无法从0x31e00000开始执行,甚至一条指令都取不出来(qemu-7.1.0/target/riscv/translate.c中decode_opc函数第1052行,不会中断停下来)。

3 原因分析

我们调试QEMU源码,发现NEMU通过Socket发给QEMU的二进制镜像,并没有被写入QEMU的0x31e00000内存中,而是跳过了。
这点找一个正常向0x80000000写入成功的例子,来对照一下,就很容易定位。
因此,内存中没有该二进制可执行内容,故无法取指执行。

4 解决办法

在qemu-7.1.0/hw/riscv/spike.c文件,spike_board_init函数中,有如下调用:

/* register system main memory (actual RAM) */
memory_region_add_subregion(system_memory, memmap[SPIKE_DRAM].base, machine->ram);

注册系统主内存时,默认使用spike.c文件中spike_memmap数组,第SPIKE_DRAM个元素,该数组定义如下:

static const MemMapEntry spike_memmap[] = {[SPIKE_MROM] =     {     0x1000,     0xf000 },[SPIKE_HTIF] =     {  0x1000000,     0x1000 },[SPIKE_CLINT] =    {  0x2000000,    0x10000 },[SPIKE_DRAM] =     { 0x80000000,        0x0 },
};

因此,QEMU只认为0x80000000开始为DRAM,其他不认。
我们只需要,将0x80000000修改为0x30000000,再次尝试从0x31e00000运行,就成功了。

5 踩坑回忆

5.1 坑1 - 怀疑设备树有问题

当时第一反应,是以为设备树不对,因此修改了设备树中memory地址定义。事实证明没用。

后面看了QEMU的spike_board_init函数代码,其实QEMU会默认创建一个设备树,该设备树中memory地址,默认使用的是spike_memmap数组,因此我们只要改了spike_memmap数组,那设备树中memory地址也会改变。

以下,附一些设备树的常用命令。

从QEMU中导出设备树,启动QEMU时,添加如下选项:

-M virt,dumpdtb=123.dtb 

将DTS编译为DTB:

dtc -I dts -O dtb -o 123.dtb 123.dts

将DTB转为DTS:

dtc -I dtb -O dts 123.dtb -o 123.dts

5.2 坑2 - 怀疑QEMU中内存未写入成功

真实原因就是这个。
其实在qemu-7.1.0/gdbstub.c中有一对函数:

  • handle_write_mem函数
  • handle_read_mem函数

NEMU发送数据给QEMU时,会调用handle_write_mem,如果在NEMU中再实现一个读内存的发包函数,那么就可以从QEMU中读取内存,在NEMU中将读到的数据与之前写入的数据,进行比较,很容易定位,两次数据不一致,内存写入有问题。

附,写内存数据包格式

// 写入内存,数据包
"M0x31e00000,5dc:1711000013010100b7120000330151006f00001e1301..."
  • M表示写入内存,m表示读取内存。
  • 0x31e00000:表示写入内存的地址为0x31e00000。
  • 0x5dc:表示后面跟的,数据长度为1500字节,实际数据包中因为是2个字符表示一个字节,因此后面实际字符串数据长度为1500*2。
  • 1711000013010…:表示数据,"171100"解析后,就是0x17 0x11 0x00,低字节在前,高字节在后。

5.3 QEMU地址空间分析过程

以下内容很乱,请忽略,纯记录。

QEMU中有一个结构GDBState,包含了很多信息,就包含CPU的地址空间。
该结构中有个成员g_cpu,层次关系如下:

// 是否为DRAM地址
g_cpu->cpu_ases[0].as->current_map->dispatch->mru_section->mr->ram
// DRAM基址
g_cpu->cpu_ases[0].as->current_map->dispatch->mru_section->offset_within_address_space
// DRAM空间大小
g_cpu->cpu_ases[0].as->current_map->dispatch->mru_section->size

MemoryRegionSection表示一个地址范围,如[0x80000000, 0x88000000]。
其offset_within_address_space表示基址,size表示大小。

typedef QTAILQ_HEAD(CPUTailQ, CPUState) CPUTailQ;
// 展开后为:
typedef union CPUTailQ {struct CPUState* tqh_first;    // first elementQTailQLink tqh_circ;       // last element
} CPUTailQ;extern CPUTailQ cpus;
CPUState* cpu = first_cpu = (&cpus)->tqh_first

打的一些断点:

  • b gdbstub.c:836,gdbstub.c中gdb_first_attached_cpu()
  • b cpus-common.c:92

相关文章:

解决QEMU无法从非0x80000000处开始执行

解决QEMU无法从非0x80000000处开始执行 1 背景介绍2 问题描述3 原因分析4 解决办法5 踩坑回忆5.1 坑1 - 怀疑设备树有问题5.2 坑2 - 怀疑QEMU中内存未写入成功5.3 QEMU地址空间分析过程 1 背景介绍 在使用NEMU与QEMU做DiffTest的场景下,运行的固件为《RISC-V体系结…...

AI在候选人评估中的作用:精准筛选与HR决策的助力

一、引言 随着科技的迅猛发展,人工智能(AI)技术已逐渐渗透到各个行业和领域,人力资源管理(HRM)亦不例外。在候选人评估的环节中,AI技术以其高效、精准的特性,正在逐步改变着传统的招…...

自动化测试的艺术:Xcode中GUI测试的全面指南

自动化测试的艺术:Xcode中GUI测试的全面指南 在软件开发过程中,图形用户界面(GUI)测试是确保应用质量和用户体验的关键环节。Xcode,作为苹果的官方集成开发环境(IDE),提供了一套强大…...

uniapp封装请求拦截器,封装请求拦截和响应拦截的方法

首先我们先看一下uni官方给开发者提供的uni.request用来网络请求的api 1 2 3 4 5 6 7 8 9 uni.request({ url: , method: GET, data: {}, header: {}, success: res > {}, fail: () > {}, complete: () > {} }); 可以看到我们每次请求数据的时候都需…...

开局一个启动器:从零开始入坑ComfyUI

前几天刷某乎的时候看到了一位大佬写的好文,可图 IP-Adapter 模型已开源,更多玩法,更强生态! - 知乎 (zhihu.com) 久闻ComfyUI大名,决定试一下。这次打算不走寻常路,不下载现成的一键包了,而是…...

34_YOLOv5网络详解

1.1 简介 YOLOV5是YOLO(You Only Look Once)系列目标检测模型的一个重要版本,由 Ultralytics 公司的Glenn Jocher开发并维护。YOLO系列以其快速、准确的目标检测能力而闻名,尤其适合实时应用。YOLOV5在保持高效的同时&#xff0c…...

深入解析Perl的正则表达式:功能、应用与技巧

在编程世界中,正则表达式是一种强大的文本处理工具,它能够用于搜索、替换、匹配字符串等操作。Perl语言以其强大的文本处理能力著称,而其正则表达式功能更是其核心特性之一。本文将深入探讨Perl中的正则表达式,包括其基本语法、应…...

【JAVA】Hutool CollUtil.sort 方法:多场景下的排序解决方案

在 Java 开发中&#xff0c;集合的排序是常见需求。Hutool 库的 CollUtil.sort 方法提供了一系列用于排序的实用功能&#xff0c;适用于不同的场景。以下是对几种常见场景及其实现方式的总结&#xff1a; <dependency><groupId>org.dromara.hutool</groupId>…...

Mysql-安装(Linux)

1、下载mysql 切换到/opt/app目录下&#xff0c;执行如下命令&#xff0c;下载mysql 5.7.38版本。 [rootywxtdb app]# wget https://cdn.mysql.com/archives/mysql-5.7/mysql-5.7.38-linux-glibc2.12-x86_64.tar.gz 解压安装包 [rootywxtdb app]# tar -zxvf mysql-5.7.38-l…...

如何查看日志

别用 cat cat 把整个日志文件刷屏 慎用 vim 日志不大随便整&#xff0c;因为vim会把整个日志文件读到内存&#xff0c;大日志文件&#xff08;G级别&#xff09;会造成内存占用过高&#xff0c;影响其他程序&#xff0c;在业务机器上查看日志这样尤其危险 less is more 还…...

python实现责任链模式

把多个处理方法串成一个list。下一个list的节点是上一个list的属性。 每个节点都有判断是否能处理当前数据的方法。能处理&#xff0c;则直接处理&#xff0c;不能处理则调用下一个节点&#xff08;也就是当前节点的属性&#xff09;来进行处理。 Python 实现责任链模式&#…...

Prometheus监控ZooKeeper

1. 简介 ZooKeeper是一个分布式协调服务,在分布式系统中扮演着重要角色。为了确保ZooKeeper集群的健康运行,有效的监控至关重要。本文将详细介绍如何使用Prometheus监控ZooKeeper,包括安装配置、关键指标、告警设置以及最佳实践。 2. 安装和配置 2.1 安装ZooKeeper Exporter…...

vuepress搭建个人文档

vuepress搭建个人文档 文章目录 vuepress搭建个人文档前言一、VuePress了解二、vuepress-reco主题个人博客搭建三、vuepress博客部署四、vuepress后续补充 总结 vuepress搭建个人文档 所属目录&#xff1a;项目研究创建时间&#xff1a;2024/7/23作者&#xff1a;星云<Xing…...

面试题 17.14.最小K个数

题目&#xff1a;如下图 答案&#xff1a;如下图 /*** Note: The returned array must be malloced, assume caller calls free().*/ void AdjustDown(int* a,int n,int root) {int parent root;int child parent * 2 1;//默认左孩子是大的&#xff0c;将其与右孩子比较&am…...

C++实现LRU缓存(新手入门详解)

LRU的概念 LRU&#xff08;Least Recently Used&#xff0c;最近最少使用&#xff09;是一种常用的缓存淘汰策略&#xff0c;主要目的是在缓存空间有限的情况下&#xff0c;优先淘汰那些最长时间没有被访问的数据项。LRU 策略的核心思想是&#xff1a; 缓存空间有限&#xff1…...

汇昌联信数字做拼多多运营实力好吗?

汇昌联信数字在拼多多运营方面的实力如何?汇昌联信数字作为一家专注于电子商务运营服务的公司&#xff0c;其在拼多多平台的运营能力是值得关注的。根据市场反馈和客户评价&#xff0c;汇昌联信数字在拼多多的运营实力表现良好&#xff0c;能够为客户提供专业的店铺管理、产品…...

【云原生】Prometheus 服务自动发现使用详解

目录 一、前言 二、Prometheus常规服务监控使用现状​​​​​​​ 2.1 Prometheus监控架构图 2.2 Prometheus服务自动发现的解决方案 三、Prometheus服务自动发现介绍 3.1 什么是Prometheus服务自动发现 3.2 Prometheus自动服务发现策略 3.3 Prometheus自动服务发现应用…...

(十九)原生js案例之h5地里位置信息与高德地图的初使用

h5 地里位置信息 1. 获取当前位置信息 window.onload function () {const oBtn document.querySelector("#btn");const oBox document.querySelector("#box");oBtn.onclick function () {window.navigator.geolocation.getCurrentPosition(function (…...

三、基础语法2(30小时精通C++和外挂实战)

三、基础语法2&#xff08;30小时精通C和外挂实战&#xff09; B-02内联函数B-04内联函数与宏B-05_constB-06引用B-07引用的本质B-08-汇编1-X86-X64汇编B-09-汇编2-内联汇编B-10-汇编3-MOV指令C-02-汇编5-其他常见指令C-05-汇编8-反汇编分析C-07-const引用、特点 B-02内联函数 …...

gitee设置ssh公钥密码频繁密码验证

gitee中可以创建私有项目&#xff0c;但是在clone或者push都需要输入密码&#xff0c; 比较繁琐。 公钥则可以解决该问题&#xff0c;将私钥放在本地&#xff0c;公钥放在gitee上&#xff0c;当对项目进行操作时带有的私钥会在gitee和公钥进行验证&#xff0c;避免了手动输入密…...

C++_核心编程_多态案例二-制作饮品

#include <iostream> #include <string> using namespace std;/*制作饮品的大致流程为&#xff1a;煮水 - 冲泡 - 倒入杯中 - 加入辅料 利用多态技术实现本案例&#xff0c;提供抽象制作饮品基类&#xff0c;提供子类制作咖啡和茶叶*//*基类*/ class AbstractDr…...

Leetcode 3576. Transform Array to All Equal Elements

Leetcode 3576. Transform Array to All Equal Elements 1. 解题思路2. 代码实现 题目链接&#xff1a;3576. Transform Array to All Equal Elements 1. 解题思路 这一题思路上就是分别考察一下是否能将其转化为全1或者全-1数组即可。 至于每一种情况是否可以达到&#xf…...

C++:std::is_convertible

C++标志库中提供is_convertible,可以测试一种类型是否可以转换为另一只类型: template <class From, class To> struct is_convertible; 使用举例: #include <iostream> #include <string>using namespace std;struct A { }; struct B : A { };int main…...

Golang 面试经典题:map 的 key 可以是什么类型?哪些不可以?

Golang 面试经典题&#xff1a;map 的 key 可以是什么类型&#xff1f;哪些不可以&#xff1f; 在 Golang 的面试中&#xff0c;map 类型的使用是一个常见的考点&#xff0c;其中对 key 类型的合法性 是一道常被提及的基础却很容易被忽视的问题。本文将带你深入理解 Golang 中…...

Golang dig框架与GraphQL的完美结合

将 Go 的 Dig 依赖注入框架与 GraphQL 结合使用&#xff0c;可以显著提升应用程序的可维护性、可测试性以及灵活性。 Dig 是一个强大的依赖注入容器&#xff0c;能够帮助开发者更好地管理复杂的依赖关系&#xff0c;而 GraphQL 则是一种用于 API 的查询语言&#xff0c;能够提…...

什么是库存周转?如何用进销存系统提高库存周转率?

你可能听说过这样一句话&#xff1a; “利润不是赚出来的&#xff0c;是管出来的。” 尤其是在制造业、批发零售、电商这类“货堆成山”的行业&#xff0c;很多企业看着销售不错&#xff0c;账上却没钱、利润也不见了&#xff0c;一翻库存才发现&#xff1a; 一堆卖不动的旧货…...

工程地质软件市场:发展现状、趋势与策略建议

一、引言 在工程建设领域&#xff0c;准确把握地质条件是确保项目顺利推进和安全运营的关键。工程地质软件作为处理、分析、模拟和展示工程地质数据的重要工具&#xff0c;正发挥着日益重要的作用。它凭借强大的数据处理能力、三维建模功能、空间分析工具和可视化展示手段&…...

从零开始打造 OpenSTLinux 6.6 Yocto 系统(基于STM32CubeMX)(九)

设备树移植 和uboot设备树修改的内容同步到kernel将设备树stm32mp157d-stm32mp157daa1-mx.dts复制到内核源码目录下 源码修改及编译 修改arch/arm/boot/dts/st/Makefile&#xff0c;新增设备树编译 stm32mp157f-ev1-m4-examples.dtb \stm32mp157d-stm32mp157daa1-mx.dtb修改…...

Unit 1 深度强化学习简介

Deep RL Course ——Unit 1 Introduction 从理论和实践层面深入学习深度强化学习。学会使用知名的深度强化学习库&#xff0c;例如 Stable Baselines3、RL Baselines3 Zoo、Sample Factory 和 CleanRL。在独特的环境中训练智能体&#xff0c;比如 SnowballFight、Huggy the Do…...

华为OD机考-机房布局

import java.util.*;public class DemoTest5 {public static void main(String[] args) {Scanner in new Scanner(System.in);// 注意 hasNext 和 hasNextLine 的区别while (in.hasNextLine()) { // 注意 while 处理多个 caseSystem.out.println(solve(in.nextLine()));}}priv…...